论文标题

使用电子健康记录的COVID-19相关死亡率的实时预测

Real-time Prediction of COVID-19 related Mortality using Electronic Health Records

论文作者

Schwab, Patrick, Mehrjou, Arash, Parbhoo, Sonali, Celi, Leo Anthony, Hetzel, Jürgen, Hofer, Markus, Schölkopf, Bernhard, Bauer, Stefan

论文摘要

2019年冠状病毒病(COVID-19)是由严重的急性呼吸道综合征冠状病毒2(SARS-COV-2)引起的新兴呼吸道疾病,其人类至人类至人类的传播迅速,尤其是老年患者的病例死亡率很高。由于感染的指数增长,世界上许多医疗保健系统承受着越来越多的高危患者的压力。鉴于受感染的患者数量众多,识别早期死亡率风险最高的患者对于实现有效的干预和最佳护理优先次序至关重要。在这里,我们介绍了Covid-19预警系统(COVEWS),这是一种评估COVID-19相关死亡率风险的临床风险评分系统。 COVEWS为具有192小时(8天)的临床有意义预测性能的个别患者提供连续的实时风险评分,并使用机器学习自动从患者的电子健康记录(EHRS)中得出。我们使用来自66430 COVID-19的阳性患者的同类培训和评估了COVEW,在美国,澳大利亚,澳大利亚,马来西亚和印度的69多个医疗机构中,共有2863年的患者观察时间总计总计2863年。在5005名患者的外部测试队列中,COVEWS预测COVID-19相关死亡率从$ 78.8 \%\%$($ 95 \%$ $置信区间[CI]:$ 76.0 $,$ 84.7 \%\%$),$ 69.4 \%\%\%\%\%\%($ 95 \%$ ci:$ 57.6,75.2,$ 57.6,75.2,$ ci)在观察到的死亡率事件前1到192小时之间的$ 95 \%$ - 明显优于现有的通用和COVID -19特定临床风险评分。 Covews可以使临床医生能够在更早的阶段进行干预,因此可能有助于预防或减轻COVID-19相关死亡率。

Coronavirus Disease 2019 (COVID-19) is an emerging respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with rapid human-to-human transmission and a high case fatality rate particularly in older patients. Due to the exponential growth of infections, many healthcare systems across the world are under pressure to care for increasing amounts of at-risk patients. Given the high number of infected patients, identifying patients with the highest mortality risk early is critical to enable effective intervention and optimal prioritisation of care. Here, we present the COVID-19 Early Warning System (CovEWS), a clinical risk scoring system for assessing COVID-19 related mortality risk. CovEWS provides continuous real-time risk scores for individual patients with clinically meaningful predictive performance up to 192 hours (8 days) in advance, and is automatically derived from patients' electronic health records (EHRs) using machine learning. We trained and evaluated CovEWS using de-identified data from a cohort of 66430 COVID-19 positive patients seen at over 69 healthcare institutions in the United States (US), Australia, Malaysia and India amounting to an aggregated total of over 2863 years of patient observation time. On an external test cohort of 5005 patients, CovEWS predicts COVID-19 related mortality from $78.8\%$ ($95\%$ confidence interval [CI]: $76.0$, $84.7\%$) to $69.4\%$ ($95\%$ CI: $57.6, 75.2\%$) specificity at a sensitivity greater than $95\%$ between respectively 1 and 192 hours prior to observed mortality events - significantly outperforming existing generic and COVID-19 specific clinical risk scores. CovEWS could enable clinicians to intervene at an earlier stage, and may therefore help in preventing or mitigating COVID-19 related mortality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源