论文标题
基于学习的多个国家的基于学习的道路损害检测
Transfer Learning-based Road Damage Detection for Multiple Countries
论文作者
论文摘要
许多市政当局和道路当局试图实施对道路损害的自动评估。但是,他们通常缺乏技术,专有技术和资金,无法提供用于数据收集和分析道路损失的最先进设备。尽管某些国家(如日本)已经开发了较便宜且易于使用的基于智能手机的方法来自动道路状况监测,但其他国家仍然很难找到有效的解决方案。这项工作在这种情况下做出了以下贡献。首先,它评估日本模型对其他国家的可用性。其次,它提出了一个大规模的异质道路伤害数据集,其中包括使用智能手机从多个国家收集的26620张图像。第三,我们提出了能够检测和分类多个国家的道路损失的广义模型。最后,当另一个国家发布其数据和模型以自动道路损害检测和分类时,我们为其他国家的读者,地方机构和市政当局提供建议。我们的数据集可在(https://github.com/sekilab/roaddamagedetector/)上找到。
Many municipalities and road authorities seek to implement automated evaluation of road damage. However, they often lack technology, know-how, and funds to afford state-of-the-art equipment for data collection and analysis of road damages. Although some countries, like Japan, have developed less expensive and readily available Smartphone-based methods for automatic road condition monitoring, other countries still struggle to find efficient solutions. This work makes the following contributions in this context. Firstly, it assesses the usability of the Japanese model for other countries. Secondly, it proposes a large-scale heterogeneous road damage dataset comprising 26620 images collected from multiple countries using smartphones. Thirdly, we propose generalized models capable of detecting and classifying road damages in more than one country. Lastly, we provide recommendations for readers, local agencies, and municipalities of other countries when one other country publishes its data and model for automatic road damage detection and classification. Our dataset is available at (https://github.com/sekilab/RoadDamageDetector/).