论文标题

分数Lotka-volterra模型,带有时间延迟和延迟控制器的生物反应器

Fractional Lotka-Volterra model with time-delay and delayed controller for a bioreactor

论文作者

Villafuerte-Segura, Raúl, Itzá-Ortiz, Benjamín A., López-Pérez, Pablo A., Alvarado-Santos, Eduardo

论文摘要

在本文中,提出了一个生物反应器的分数Lotka-volterra数学模型,并用于拟合由称为Zymomonas mobilis连续发酵的生物普罗逊提供的数据。该型号考虑了时间延迟$τ$,这是由于耗尽了生物质$ x(t)$的测量值。进行HOPF分叉分析以表征固有的自振荡实验生物过程响应。结果,使用延迟$τ$作为分叉参数,平衡点的稳定性条件以及极限周期的条件。在避免使用观察者,估计量或额外实验室测量的假设下,以防止计算或货币成本的上升,为了控制,我们仅考虑对生物质的测量。可以使用的简单控制器是比例操作控制器$ u(t)= k_px(t)$,该$未能稳定在提议的分析下稳定所获得的模型。另一个合适的选择是使用延迟的控制器$ u(t)= k_rx(t-h)$,即使模型不稳定也能成功稳定。最后,提出的理论结果通过数值模拟得到证实。

In this paper, a fractional Lotka-Volterra mathematical model for a bioreactor is proposed and used to fit the data provided by a bioprocess known as continuous fermentation of Zymomonas mobilis. The model contemplates a time-delay $τ$ due to the dead-time in obtaining the measurement of biomass $x(t)$. A Hopf bifurcation analysis is performed to characterize the inherent self oscillatory experimental bioprocess response. As consequence, stability conditions for the equilibrium point together with conditions for limit cycles using the delay $τ$ as bifurcation parameter are obtained. Under the assumptions that the use of observers, estimators or extra laboratory measurements are avoided to prevent the rise of computational or monetary costs, for the purpose of control, we will only consider the measurement of the biomass. A simple controller that can be employed is the proportional action controller $u(t)=k_px(t)$, which is shown to fail to stabilize the obtained model under the proposed analysis. Another suitable choice is the use of a delayed controller $u(t)=k_rx(t-h)$ which successfully stabilizes the model even when it is unstable. Finally, the proposed theoretical results are corroborated through numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源