论文标题

对抗隐私保护嵌入反对推理攻击的图形

Adversarial Privacy Preserving Graph Embedding against Inference Attack

论文作者

Li, Kaiyang, Luo, Guangchun, Ye, Yang, Li, Wei, Ji, Shihao, Cai, Zhipeng

论文摘要

最近,物联网(IoT),移动设备,社交媒体等的受欢迎程度激增,为图形数据开辟了大量资源。事实证明,图形嵌入对于从图形结构化数据中学习低维特征表示非常有用。这些特征表示形式可用于从节点分类到链接预测的各种预测任务。但是,现有的图形嵌入方法并不认为用户的隐私以防止推理攻击。也就是说,对手可以通过分析从图嵌入算法中学到的节点表示来推断用户的敏感信息。在本文中,我们提出了对抗性隐私图嵌入(APGE),这是一个图形对抗训练框架,该培训框架集成了解开和清除机制,以从学习的节点表示中删除用户的私人信息。所提出的方法保留了图的结构信息和实用性属性,同时隐藏了用户的私人属性免于推理攻击。在现实世界图数据集上进行的广泛实验证明了与最先进的APGE的出色性能。我们的源代码可以在https://github.com/uj62jhd/privacy-preserving-social-network-embedding上找到。

Recently, the surge in popularity of Internet of Things (IoT), mobile devices, social media, etc. has opened up a large source for graph data. Graph embedding has been proved extremely useful to learn low-dimensional feature representations from graph structured data. These feature representations can be used for a variety of prediction tasks from node classification to link prediction. However, existing graph embedding methods do not consider users' privacy to prevent inference attacks. That is, adversaries can infer users' sensitive information by analyzing node representations learned from graph embedding algorithms. In this paper, we propose Adversarial Privacy Graph Embedding (APGE), a graph adversarial training framework that integrates the disentangling and purging mechanisms to remove users' private information from learned node representations. The proposed method preserves the structural information and utility attributes of a graph while concealing users' private attributes from inference attacks. Extensive experiments on real-world graph datasets demonstrate the superior performance of APGE compared to the state-of-the-arts. Our source code can be found at https://github.com/uJ62JHD/Privacy-Preserving-Social-Network-Embedding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源