论文标题

利用Altmetrics大规模数据中的推文观点

Exploiting Tweet Sentiments in Altmetrics Large-Scale Data

论文作者

Hassan, Saeed-Ul, Aljohani, Naif Radi, Tarar, Usman Iqbal, Safder, Iqra, Sarwar, Raheem, Alelyani, Salem, Nawaz, Raheel

论文摘要

本文旨在利用科学文献(特别是推文)的社会交流,以分析社交媒体用户对研究领域出版物的情感。首先,我们使用新创建的词典术语扩展的Sentisrenth工具,以对AltMetric.com提供的1,083,535个出版物相关的6,482,260条推文进行分类。然后,我们提出了基于谐波均值的统计措施,以使用正情绪评分和频率指标产生专业的词典。接下来,我们采用新颖的文章级摘要方法来域级别的情感分析,以评估Twitter上有关科学文献的社交媒体用户的看法。最后,我们建议并采用基于方面的分析方法来挖掘用户与文章各个方面的表达,例如有关其标题,摘要,方法论,结论或结果部分的推文。我们表明,研究社区对各自领域表现出不同的情感。对文章方面的现场分布的分析表明,在医学,经济学,商业和决策科学中,推文方面的重点是结果部分。相比之下,物理和天文学,材料科学和计算机科学这些方面的重点是方法论部分。总体而言,这项研究有助于我们了解科学文献科学界在线社会交流的情感。具体而言,这种细粒度的分析可以帮助研究社区改善其社交媒体关于科学文章的交流,以有效地传播其科学发现并进一步增强其社会影响。

This article aims to exploit social exchanges on scientific literature, specifically tweets, to analyse social media users' sentiments towards publications within a research field. First, we employ the SentiStrength tool, extended with newly created lexicon terms, to classify the sentiments of 6,482,260 tweets associated with 1,083,535 publications provided by Altmetric.com. Then, we propose harmonic means-based statistical measures to generate a specialized lexicon, using positive and negative sentiment scores and frequency metrics. Next, we adopt a novel article-level summarization approach to domain-level sentiment analysis to gauge the opinion of social media users on Twitter about the scientific literature. Last, we propose and employ an aspect-based analytical approach to mine users' expressions relating to various aspects of the article, such as tweets on its title, abstract, methodology, conclusion, or results section. We show that research communities exhibit dissimilar sentiments towards their respective fields. The analysis of the field-wise distribution of article aspects shows that in Medicine, Economics, Business & Decision Sciences, tweet aspects are focused on the results section. In contrast, Physics & Astronomy, Materials Sciences, and Computer Science these aspects are focused on the methodology section. Overall, the study helps us to understand the sentiments of online social exchanges of the scientific community on scientific literature. Specifically, such a fine-grained analysis may help research communities in improving their social media exchanges about the scientific articles to disseminate their scientific findings effectively and to further increase their societal impact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源