论文标题

广播的非参数张量回归

Broadcasted Nonparametric Tensor Regression

论文作者

Zhou, Ya, Wong, Raymond K. W., He, Kejun

论文摘要

我们提出了对广播操作的新颖使用,该操作将单变量函数分布到张量协变量的所有条目中,以非张量回归中的非线性对非线性进行建模。提出了惩罚估计和相应的算法。我们的理论研究允许张量协变量的尺寸发散,表明所提出的估计得出的收敛速率。我们还提供了一个Minimax下限,该界限表征了所提出的估计器在各种场景中的最佳性。进行数值实验以确认理论发现,它们表明所提出的模型比其现有线性对应物具有优势。

We propose a novel use of a broadcasting operation, which distributes univariate functions to all entries of the tensor covariate, to model the nonlinearity in tensor regression nonparametrically. A penalized estimation and the corresponding algorithm are proposed. Our theoretical investigation, which allows the dimensions of the tensor covariate to diverge, indicates that the proposed estimation yields a desirable convergence rate. We also provide a minimax lower bound, which characterizes the optimality of the proposed estimator for a wide range of scenarios. Numerical experiments are conducted to confirm the theoretical findings, and they show that the proposed model has advantages over its existing linear counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源