论文标题
$ Q $ - 定性和$ t $ - Markov Triples的变形
$q$-Deformations and $t$-deformations of Markov triples
论文作者
论文摘要
在本文中,我们将Markov三元组推广到两个不同的方向。一个是使用\ cite {mo}引入的$ q $ profformation {mo}与群集代数,量子拓扑和分析数理论有关的概括。另一个是使用前均匀矢量空间\ cite {saki}的castling变换的方向,在表示理论和自其函数的研究中起着重要作用。此外,本文给出了两个概括之间的关系。这可能会在不同的字段之间提供某种桥接。
In this paper, we generalize the Markov triples in two different directions. One is generalization in direction of using the $q$-deformation of rational number introduced by \cite{MO} in connection with cluster algebras, quantum topology and analytic number theory. The other is direction using castling transforms of prehomogeneous vector spaces \cite{SaKi} which plays an important role in the study of representation theory and automorphic function. In addition, the present paper gives a relationship between the two generalizations. This may provide some kind of bridging between different fields.