论文标题
hetegcn:用于文本分类的异质图卷积网络
HeteGCN: Heterogeneous Graph Convolutional Networks for Text Classification
论文作者
论文摘要
我们考虑了学习有效和归纳图卷积网络的问题,该网络具有大量示例和功能的文本分类。现有的基于最新图形嵌入的方法,例如预测性文本嵌入(PTE)和TextGCN,在预测性能,可伸缩性和归纳能力方面存在缺点。为了解决这些局限性,我们提出了一个异质图卷积网络(HETEGCN)建模方法,该方法将PTE和TextGCN的最佳方面结合在一起。主要思想是使用HeteGCN体系结构学习功能嵌入并得出文档嵌入,并在各个层上使用不同的图。我们通过将文本GCN分解为几种HeteGCN模型来简化TextGCN,该模型(a)有助于研究单个模型的实用性,(b)在融合不同模型的学习嵌入方面具有灵活性。实际上,模型参数的数量大大减少,从而在小标记的训练集方案中更快地训练并提高了性能。我们的详细实验研究证明了该方法的功效。
We consider the problem of learning efficient and inductive graph convolutional networks for text classification with a large number of examples and features. Existing state-of-the-art graph embedding based methods such as predictive text embedding (PTE) and TextGCN have shortcomings in terms of predictive performance, scalability and inductive capability. To address these limitations, we propose a heterogeneous graph convolutional network (HeteGCN) modeling approach that unites the best aspects of PTE and TextGCN together. The main idea is to learn feature embeddings and derive document embeddings using a HeteGCN architecture with different graphs used across layers. We simplify TextGCN by dissecting into several HeteGCN models which (a) helps to study the usefulness of individual models and (b) offers flexibility in fusing learned embeddings from different models. In effect, the number of model parameters is reduced significantly, enabling faster training and improving performance in small labeled training set scenario. Our detailed experimental studies demonstrate the efficacy of the proposed approach.