论文标题

较高的自旋重力:量化和代数结构

Higher Spin Gravity: Quantization and Algebraic Structures

论文作者

Tran, Tung

论文摘要

本文的目的是探索较高自旋重力(HSGRA)及其强调代数结构的量子方面。我们对HSGRAS进行简要审查,然后对三章进行三章,并取得原始结果。第一章致力于研究抗DE保姆空间中全息Hsgras的真空一环校正。我们表明,HSGras的$ F $ Emgy与整数维度的双CFT之间的预测之间存在着显着的协议。我们将此结果扩展到连​​续的尺寸,并表明HSGRA中的真空一环校正将Wilson-Fisher CFT的$ F $ Emangy重现为$4-ε$尺寸。论文的第二部分探讨了手性较高自旋重力的量子性能 - 在四个维度上的任何其他HSGRA的封闭子部门。我们表明,手性理论是一环的紫外线。此外,手性HSGRA中的一环振幅与QCD的自偶联子部门之间存在有趣的关系。论文的最后一部分致力于Hsgras的代数结构。作为一个应用程序,我们以两种不同的方式以$ ads_5 $构建形式的玻璃体hsgra:通过变形约瑟夫关系并通过变形准符号形式实现。

The aim of this thesis is to explore the quantum aspects of Higher Spin Gravities (HSGRAs) and their underlining algebraic structures. We give a concise review of HSGRAs followed by three chapters with original results. The first chapter is dedicated to the study of the vacuum one-loop correction of holographic HSGRAs in Anti-de Sitter space. We show that there is a remarkable agreement between the $F$-energy of HSGRAs in the bulk and the predictions coming from the dual CFTs in integer dimensions. We extend this result to continuous dimension and show that vacuum one-loop corrections in HSGRA reproduce the $F$-energy of the Wilson-Fisher CFT in $4-ε$ dimension. The second part of the thesis explores the quantum properties of Chiral Higher Spin Gravity - a closed subsector of any other HSGRA in four dimensions. We show that Chiral Theory is UV-finite at one-loop. Moreover, there is an interesting relation between one-loop amplitudes in Chiral HSGRA and the self-dual subsector of QCD. The last part of the thesis is devoted to algebraic structures of HSGRAs. As an application, we construct a formal bosonic HSGRA in $AdS_5$ in two different ways: by deforming the Joseph relations and by deforming the quasi-conformal realization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源