论文标题

运动方程和从头启动旋转动力学中的约束场

Equation of motion and the constraining field in ab initio spin dynamics

论文作者

Streib, Simon, Borisov, Vladislav, Pereiro, Manuel, Bergman, Anders, Sjöqvist, Erik, Delin, Anna, Eriksson, Olle, Thonig, Danny

论文摘要

人们普遍认为,作用在磁矩上的有效磁场是由能量相对于磁化的能量梯度给出的。然而,在绝热近似中的自旋动力学中,也已知有效场正是约束场的否定场,它充当了稳定异常平衡的非平衡,非固定磁性构型的Lagrange乘数。我们表明,对于没有均值场参数的汉密尔顿人来说,这两个领域都是完全等效的,而平均场地哈密顿人可能会有有限的差异。对于密度功能理论(DFT)计算,从辅助Kohn-Sham Hamiltonian获得的约束场并不完全等于DFT能量梯度。这种不平等与从头静脉自旋动力学和交换常数和有效磁性汉密尔顿人的摘要计算高度相关。我们认为,当根据能量梯度而不是从约束场计算时,有效的磁场和交换常数在DFT中的精度最高。

It is generally accepted that the effective magnetic field acting on a magnetic moment is given by the gradient of the energy with respect to the magnetization. However, in ab initio spin dynamics within the adiabatic approximation, the effective field is also known to be exactly the negative of the constraining field, which acts as a Lagrange multiplier to stabilize an out-of-equilibrium, non-collinear magnetic configuration. We show that for Hamiltonians without mean-field parameters both of these fields are exactly equivalent, while there can be a finite difference for mean-field Hamiltonians. For density-functional theory (DFT) calculations the constraining field obtained from the auxiliary Kohn-Sham Hamiltonian is not exactly equivalent to the DFT energy gradient. This inequality is highly relevant for both ab initio spin dynamics and the ab initio calculation of exchange constants and effective magnetic Hamiltonians. We argue that the effective magnetic field and exchange constants have the highest accuracy in DFT when calculated from the energy gradient and not from the constraining field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源