论文标题
在量子计算机上查找大小的K-Clique实例
Finding Small and Large k-Clique Instances on a Quantum Computer
论文作者
论文摘要
对于量子计算机,已经提出了三角形找到的算法,这是k-clique问题的最小实例。尽管如此,这些算法还是假定使用固定访问时间量子RAM(QRAM)。我们提出了一种基于门的实用方法来解决三角发现问题及其NP-hard k-clique概括。我们检查了在嘈杂的中等规模量子计算机(NISQ)设备上近期实施的两个常数因素,以及评估量子计算机长期使用的问题的缩放。我们比较了理论方法和实际实施的时间复杂性和电路实用性。我们在K-Clique问题上提出并应用两种不同的策略,以研究Qiskit实施的电路大小。我们通过使用各种错误模型模拟三角形查找来分析我们的实现,从而观察抑制正确答案幅度的影响,并将其与六台真实IBMQ机器上的执行进行比较。最后,我们估计提出的方法可以根据IBM的量子体积指数增长预测和我们的错误分析结果有效地在实际设备上运行的日期。
Algorithms for triangle-finding, the smallest nontrivial instance of the k-clique problem, have been proposed for quantum computers. Still, those algorithms assume the use of fixed access time quantum RAM (QRAM). We present a practical gate-based approach to both the triangle-finding problem and its NP-hard k-clique generalization. We examine both constant factors for near-term implementation on a Noisy Intermediate Scale Quantum computer (NISQ) device, and the scaling of the problem to evaluate long-term use of quantum computers. We compare the time complexity and circuit practicality of the theoretical approach and actual implementation. We propose and apply two different strategies to the k-clique problem, examining the circuit size of Qiskit implementations. We analyze our implementations by simulating triangle finding with various error models, observing the effect on damping the amplitude of the correct answer, and compare to execution on six real IBMQ machines. Finally, we estimate the date when the methods proposed can run effectively on an actual device based on IBM's quantum volume exponential growth forecast and the results of our error analysis.