论文标题
在鲍姆 - 康涅狄格州的猜想,用于扭转和量子罗森伯格猜想的离散量子组
On the Baum--Connes conjecture for discrete quantum groups with torsion and the quantum Rosenberg Conjecture
论文作者
论文摘要
我们为具有扭转的离散量子群的等效性kasparov类别分解。作为结果,我们表明某个类别中离散量子组的交叉产品保留了UCT。然后,我们表明,可计数离散量子组$γ$降低的c* - 代数的准分子性意味着$γ$是可以正常的,并从tikuisis,白色和冬季的工作中推断出来,以及在本文的第一部分中导致量子(即量子rosentum rosentberg univenture)的第一部分。我们还注意到,单二型性是必要的条件。
We give a decomposition of the equivariant Kasparov category for discrete quantum group with torsions. As an outcome, we show that the crossed product by a discrete quantum group in a certain class preserves the UCT. We then show that quasidiagonality of a reduced C*-algebra of a countable discrete quantum group $Γ$ implies that $Γ$ is amenable, and deduce from the work of Tikuisis, White and Winter, and the results in the first part of the paper, the converse (i.e. the quantum Rosenberg Conjecture) for a large class of countable discrete unimodular quantum groups. We also note that the unimodularity is a necessary condition.