论文标题

使用DFT和机器学习预测氧化钙壶的带隙和带边的位置

Predicting band gaps and band-edge positions of oxide perovskites using DFT and machine learning

论文作者

Li, Wei, Wang, Zigeng, Xiao, Xia, Zhang, Zhiqiang, Janotti, Anderson, Sanguthevar, Rajasekaran, Medasani, Bharat

论文摘要

局部或半密度近似(DFT-LDA/GGA)内的密度功能理论已成为电子结构固体理论的主力,对于能量和结构特性非常快,可靠,但仍然高度不准确,以预测半导体和绝缘体的带隙。使用FirstPrinciples方法对频带差距进行准确的预测是耗时的,需要混合功能,准粒子GW或量子蒙特卡洛方法。有效纠正DFT-LDA/GGA带隙并揭示此校正中涉及的主要化学和结构因素,对于在高通量计算中发现新材料是可取的。在这个方向上,我们使用DFT和机器学习技术来纠正ABO3钙钛矿氧化物代表性子集的带隙和带边的位置。依靠HSE06混合功能计算作为频带隙的目标值的结果,我们发现该类别的材料的系统带隙校正为〜1.5 eV,其中〜1 eV来自向下移动价带,从升高导谱带的情况下移动了〜0.5 eV。决定带隙校正的主要化学和结构因素是通过特征选择程序确定的。

Density functional theory within the local or semilocal density approximations (DFT-LDA/GGA) has become a workhorse in electronic structure theory of solids, being extremely fast and reliable for energetics and structural properties, yet remaining highly inaccurate for predicting band gaps of semiconductors and insulators. Accurate prediction of band gaps using firstprinciples methods is time consuming, requiring hybrid functionals, quasi-particle GW, or quantum Monte Carlo methods. Efficiently correcting DFT-LDA/GGA band gaps and unveiling the main chemical and structural factors involved in this correction is desirable for discovering novel materials in high-throughput calculations. In this direction, we use DFT and machine learning techniques to correct band gaps and band-edge positions of a representative subset of ABO3 perovskite oxides. Relying on results of HSE06 hybrid functional calculations as target values of band gaps, we find a systematic band gap correction of ~1.5 eV for this class of materials, where ~1 eV comes from downward shifting the valence band and ~0.5 eV from uplifting the conduction band. The main chemical and structural factors determining the band gap correction are determined through a feature selection procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源