论文标题

Cheeger's和Buser的不平等现象中的平等情况

The equality case in Cheeger's and Buser's inequalities on $\mathsf{RCD}$ spaces

论文作者

De Ponti, Nicolò, Mondino, Andrea, Semola, Daniele

论文摘要

我们证明,在$ \ mathsf {rcd}(1,1,\ infty)$空间的框架中获得的尖锐的Buser的不平等是刚性的,即仅在空间拆分同样的高斯时,才能获得平等。即使在平滑的设置中,结果也是新的。我们还表明,Cheeger不平等的平等在$ \ Mathsf {rcd}(k,\ infty)$空间的情况下,直径有限或正曲率的空间,我们提供了几个带有RICCI曲率的示例,而RICCI曲率下面限制了下面这些假设并不满足等于等于的假设。

We prove that the sharp Buser's inequality obtained in the framework of $\mathsf{RCD}(1,\infty)$ spaces by the first two authors is rigid, i.e. equality is obtained if and only if the space splits isomorphically a Gaussian. The result is new even in the smooth setting. We also show that the equality in Cheeger's inequality is never attained in the setting of $\mathsf{RCD}(K,\infty)$ spaces with finite diameter or positive curvature, and we provide several examples of spaces with Ricci curvature bounded below where these assumptions are not satisfied and the equality is attained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源