论文标题
使用拉格朗日超级重新填充的宇宙学模拟量子
Cosmological simulations of quasar fueling to sub-parsec scales using Lagrangian hyper-refinement
论文作者
论文摘要
我们介绍了宇宙学的水动力模拟($ m _ {\ rm halo} \大约10^{12.5} \,{\ rm m} _ {\ rm m} _ {\ odot} $ at z = 2)首次将气体转移到内在的0.1 PC周围的质量大量的黑洞。我们对多相星际介质进行建模,包括超新星,恒星风和辐射的恒星反馈,以及一种超拉格朗日改进技术,从而增加了动态接近黑洞的分辨率。我们不包括黑洞反馈。 We show that the sub-pc inflow rate (1) can reach ~6 M$_{\odot}$yr$^{-1}$ roughly in steady state during the epoch of peak nuclear gas density (z~2), sufficient to power a luminous quasar, (2) is highly time variable in the pre-quasar phase, spanning 0.001-10 M $ _ {\ odot} $ yr $^{ - 1} $在MYR时尺度上,(3)限于短(〜2 Myr)活动阶段(0.01-0.1 m $ $ $ _ {\ odot} $ yr $ $^{ - 1} $),随后在较低的核气和较长的时间内(Z),z的形成时间更长(Z)。腔。流动气体主要是凉爽的,旋转支撑在湍流和热压上占主导地位,而恒星形成可以消耗与1 pc -10 kpc的流入所提供的气体一样多。来自多尺度恒星非轴对称性的重力扭矩主导了角动量在气体自我扭转和压力梯度上的转运,积聚弱依赖于黑洞质量。亚-PC的流入率与核(但与全球恒星的核均匀)相关,并且可以超过X10的爱丁顿速率。黑洞可以从〜0.1 Myr的星系中心从星系中心移动约10 pc。积聚气体形成PC规模,旋转支持的,遮盖的结构,通常与星系尺度磁盘未对准。这些模拟为调查黑洞 - 加拉克斯共同进化开辟了新的途径。
We present cosmological hydrodynamic simulations of a quasar-mass halo ($M_{\rm halo} \approx 10^{12.5}\,{\rm M}_{\odot}$ at z=2) that for the first time resolve gas transport down to the inner 0.1 pc surrounding the central massive black hole. We model a multi-phase interstellar medium including stellar feedback by supernovae, stellar winds, and radiation, and a hyper-Lagrangian refinement technique increasing the resolution dynamically approaching the black hole. We do not include black hole feedback. We show that the sub-pc inflow rate (1) can reach ~6 M$_{\odot}$yr$^{-1}$ roughly in steady state during the epoch of peak nuclear gas density (z~2), sufficient to power a luminous quasar, (2) is highly time variable in the pre-quasar phase, spanning 0.001-10 M$_{\odot}$yr$^{-1}$ on Myr timescales, and (3) is limited to short (~2 Myr) active phases (0.01-0.1 M$_{\odot}$yr$^{-1}$) followed by longer periods of inactivity at lower nuclear gas density and late times (z~1), owing to the formation of a hot central cavity. Inflowing gas is primarily cool, rotational support dominates over turbulence and thermal pressure, and star formation can consume as much gas as provided by inflows across 1 pc - 10 kpc. Gravitational torques from multi-scale stellar non-axisymmetries dominate angular momentum transport over gas self-torquing and pressure gradients, with accretion weakly dependent on black hole mass. Sub-pc inflow rates correlate with nuclear (but decouple from global) star formation and can exceed the Eddington rate by x10. The black hole can move ~10 pc from the galaxy center on ~0.1 Myr. Accreting gas forms pc-scale, rotationally supported, obscuring structures often misaligned with the galaxy-scale disk. These simulations open a new avenue to investigate black hole-galaxy co-evolution.