论文标题

将模块交织在类别的表示

Entwined modules over representations of categories

论文作者

Banerjee, Abhishek

论文摘要

我们介绍了一个模块的理论,该理论是在一个小型类别的代表中,在半融合结构的结构中取值的值。这取决于与模块类别以及米切尔与多个对象合作的Mitchell哲学的方式开发纠缠模块类别的目的。表示的动机是由埃斯特拉达(Estrada)和维利利(Virili)的作品进行的。我们还通过Frobenius和可分离的函子来描述我们的理论如何与在小$ k $ linear类别中的基础表示的模块相关。

We introduce a theory of modules over a representation of a small category taking values in entwining structures over a semiperfect coalgebra. This takes forward the aim of developing categories of entwined modules to the same extent as that of module categories as well as the philosophy of Mitchell of working with rings with several objects. The representations are motivated by work of Estrada and Virili, who developed a theory of modules over a representation taking values in small preadditive categories, which were then studied in the same spirit as sheaves of modules over a scheme. We also describe, by means of Frobenius and separable functors, how our theory relates to that of modules over the underlying representation taking values in small $K$-linear categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源