论文标题

利用共享子空间上的内核协同作用进行精确掌握和灵巧的操纵

Leveraging Kernelized Synergies on Shared Subspace for Precision Grasp and Dexterous Manipulation

论文作者

Katyara, Sunny, Ficuciello, Fanny, Caldwell, Darwin, Siciliano, Bruno, Chen, Fei

论文摘要

与抓握相反,操纵是一项轨迹任务,需要使用灵巧的手。改善机器人手的灵巧性,提高控制器的复杂性,因此需要使用姿势协同作用的概念。受姿势协同效应的启发,这项研究提出了一个名为内核协同作用的新框架,该框架着重于同一子空间对精确抓握和降解性操作的可重复使用。在这项工作中,计算出的姿势协同子空间;通过概率运动原始素进行参数化,用内核处理以保留其抓握和操纵特性,并允许其重用新物体。通过力量闭合质量指数评估所提出框架的掌握稳定性。为了进行性能评估,使用SynGrasp工具箱在两个不同的模拟机器人手模型上测试了所提出的框架,并在实验上,执行并报告了四个复杂的抓握和操纵任务。结果证实了所提出的框架的不可知论方法及其对不同物体的概括,无论其形状和大小如何。

Manipulation in contrast to grasping is a trajectorial task that needs to use dexterous hands. Improving the dexterity of robot hands, increases the controller complexity and thus requires to use the concept of postural synergies. Inspired from postural synergies, this research proposes a new framework called kernelized synergies that focuses on the re-usability of the same subspace for precision grasping and dexterous manipulation. In this work, the computed subspace of postural synergies; parameterized by probabilistic movement primitives, is treated with kernel to preserve its grasping and manipulation characteristics and allows its reuse for new objects. The grasp stability of the proposed framework is assessed with a force closure quality index. For performance evaluation, the proposed framework is tested on two different simulated robot hand models using the Syngrasp toolbox and experimentally, four complex grasping and manipulation tasks are performed and reported. The results confirm the hand agnostic approach of the proposed framework and its generalization to distinct objects irrespective of their shape and size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源