论文标题

在代数辅助环上

On the algebraic cobordism ring of involutions

论文作者

Haution, Olivier

论文摘要

我们考虑一个特征领域而非两个领域的互动环,其元素是配备有互动的光滑投射品种类别的形式差异,并且关系来自于等效K理论的特征数字。我们详细研究了该环的结构。就Chern数字而言,提供了有关品种的参与,将环境品种与固定基因座的几何形状与固定基因座的几何形状相关的具体应用。特别是,我们证明了Boardman在拓扑中的五半定理的代数类似物,我们提供了几种概括和变化。

We consider the cobordism ring of involutions of a field of characteristic not two, whose elements are formal differences of classes of smooth projective varieties equipped with an involution, and relations arise from equivariant K-theory characteristic numbers. We investigate in detail the structure of this ring. Concrete applications are provided concerning involutions of varieties, relating the geometry of the ambient variety to that of the fixed locus, in terms of Chern numbers. In particular, we prove an algebraic analog of Boardman's five halves theorem in topology, of which we provide several generalisations and variations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源