论文标题

量子混乱和保理范围

Quantum Chaos and the Spectrum of Factoring

论文作者

Rosales, Jose Luis, Briongos, Samira, Martin, Vicente

论文摘要

存在一个分解问题的哈密顿式公式,还需要定义一个分解集合(集合以哪些可分解的数字,$ n'= x'y'$,具有相同的琐碎分解算法复杂性,属于属性)。对于其中的素数,可能只有离散值的函数$ e $应该是从磁性陷阱中的密闭电荷系统中类似的能量。这是将量子力学与数字理论联系起来的量子保理模拟假设。在这项工作中,我们报告了从随机openssl n-bits moduli样本中对$ e $的统计分析存在这种离散频谱的数值证据(可以将其视为分解集合的一部分)。在这里,我们表明这些$ e $的展开的距离概率拟合到{\ it高斯单位合奏},如果它们实际上与表现出混乱的磁性限制系统的量子能级间距相对应,则一致。这些预测的确认列出了量子模拟器假设,因此指出了量子力学和数字理论之间存在联络的情况。从纯量子模拟原始素中获得了Shor的量子分解问题的多项式时间复杂性。

There exists a Hamiltonian formulation of the factorisation problem which also needs the definition of a factorisation ensemble (a set to which factorable numbers, $N'=x'y'$, having the same trivial factorisation algorithmic complexity, belong). For the primes therein, a function $E$, that may take only discrete values, should be the analogous of the energy from a confined system of charges in a magnetic trap. This is the quantum factoring simulator hypothesis connecting quantum mechanics with number theory. In this work, we report numerical evidence of the existence of this kind of discrete spectrum from the statistical analysis of the values of $E$ in a sample of random OpenSSL n-bits moduli (which may be taken as a part of the factorisation ensemble). Here, we show that the unfolded distance probability of these $E$'s fits to a {\it Gaussian Unitary Ensemble}, consistently as required, if they actually correspond to the quantum energy levels spacing of a magnetically confined system that exhibits chaos. The confirmation of these predictions bears out the quantum simulator hypothesis and, thereby, it points to the existence of a liaison between quantum mechanics and number theory. Shor's polynomial time complexity of the quantum factorisation problem, from pure quantum simulation primitives, was obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源