论文标题
在某些Tannakian类别上,Kaehler歧管上的可集成联系
On certain Tannakian categories of integrable connections over Kaehler manifolds
论文作者
论文摘要
给定紧凑的kaehler歧管X,表明形式成对(E,d),其中e是x上的微不足道的全态矢量束,而d是$ e $上的可集成的全态连接,产生了中性的tannakian类别。研究了相应的促数仿射组方案。特别是,这表明这种紧凑的riemann表面的促晶型仿射组方案决定了黎曼表面的同构类别。
Given a compact Kaehler manifold X, it is shown that pairs of the form (E, D), where E is a trivial holomorphic vector bundle on X, and D is an integrable holomorphic connection on $E$, produce a neutral Tannakian category. The corresponding pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-algebraic affine group scheme for a compact Riemann surface determines uniquely the isomorphism class of the Riemann surface.