论文标题

在某些Tannakian类别上,Kaehler歧管上的可集成联系

On certain Tannakian categories of integrable connections over Kaehler manifolds

论文作者

Biswas, Indranil, Santos, João Pedro dos, Dumitrescu, Sorin, Heller, Sebastian

论文摘要

给定紧凑的kaehler歧管X,表明形式成对(E,d),其中e是x上的微不足道的全态矢量束,而d是$ e $上的可集成的全态连接,产生了中性的tannakian类别。研究了相应的促数仿射组方案。特别是,这表明这种紧凑的riemann表面的促晶型仿射组方案决定了黎曼表面的同构类别。

Given a compact Kaehler manifold X, it is shown that pairs of the form (E, D), where E is a trivial holomorphic vector bundle on X, and D is an integrable holomorphic connection on $E$, produce a neutral Tannakian category. The corresponding pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-algebraic affine group scheme for a compact Riemann surface determines uniquely the isomorphism class of the Riemann surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源