论文标题
由杨 - 巴克斯特方程构建的哈密顿模型的作用:纠缠和相关度量
Action in Hamiltonian Models Constructed by Yang-Baxter Equation: Entanglement and Measures of Correlation
论文作者
论文摘要
通过使用量子阳限化方法,我们研究了不同汉密尔顿人对不同两分输入状态的作用下的量子纠缠的动力学,并分析了杨巴克斯特对其的作用的影响。在嘈杂环境中发生的任何量子过程中,量子相关性显示行为不会增加。我们指出,对于受不同杨巴克斯特操作的动作的两分系统,可以通过对初始状态的适当选择和扬税的过程来减轻相关性的损失。我们表明,在嘈杂的环境中,可以创建执行任何量子信息任务的最佳条件。
By using the quantum Yang-Baxterization approach, we investigate the dynamics of quantum entanglement under the actions of different Hamiltonians on the different two-qubit input states and analyze the effects of the Yang-Baxter operations on it. During any quantum process that takes place in a noisy environment, quantum correlations display behavior that does not increase. We point out that for two-qubit systems subject to actions of different Yang-Baxter operations the loss of correlations can be mitigated by the appropriate choice of the initial states and the Yang-Baxterization process. We show that in a noisy environment it possible to create the optimal conditions for performing any quantum information task.