论文标题

基于基因组数据的预测建模的一般内核增强框架集成了途径

A general kernel boosting framework integrating pathways for predictive modeling based on genomic data

论文作者

Zeng, Li, Yu, Zhaolong, Zhang, Yiliang, Zhao, Hongyu

论文摘要

基于基因组数据的预测建模通过允许研究人员和临床医生可以更有效地识别生物标志物并量身定制治疗决策,从而在生物医学研究和临床实践中获得了知名度。结合途径信息的分析可以提高发现能力,并更好地将新发现与生物学机制联系起来。在本文中,我们提出了一个基于途径的内核增强(PKB),其中包含了有关预测二进制,连续和生存结果的途径的临床信息和先验知识。我们为不同的结果类型介绍了适当的损失功能和优化程序。我们的预测算法通过从途径中构造内核函数空间并将其用作增强过程中的基础学习者来结合途径知识。通过广泛的模拟和药物反应和癌症存活数据集的案例研究,我们证明了PKB可以大大优于其他竞争方法,更好地识别与药物反应和患者生存有关的生物学途径,并提供对癌症发病机理和治疗反应的新见解。

Predictive modeling based on genomic data has gained popularity in biomedical research and clinical practice by allowing researchers and clinicians to identify biomarkers and tailor treatment decisions more efficiently. Analysis incorporating pathway information can boost discovery power and better connect new findings with biological mechanisms. In this article, we propose a general framework, Pathway-based Kernel Boosting (PKB), which incorporates clinical information and prior knowledge about pathways for prediction of binary, continuous and survival outcomes. We introduce appropriate loss functions and optimization procedures for different outcome types. Our prediction algorithm incorporates pathway knowledge by constructing kernel function spaces from the pathways and use them as base learners in the boosting procedure. Through extensive simulations and case studies in drug response and cancer survival datasets, we demonstrate that PKB can substantially outperform other competing methods, better identify biological pathways related to drug response and patient survival, and provide novel insights into cancer pathogenesis and treatment response.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源