论文标题
相互作用相同系统的热力学极限的响应理论和相变
Response Theory and Phase Transitions for the Thermodynamic Limit of Interacting Identical Systems
论文作者
论文摘要
我们研究了经历了随机进化的耦合相同剂网络的热力学极限的响应,该网络通常描述了非平衡条件。所有系统都针对质量的共同中心。我们得出了Kramers-kronig关系和总和规则,用于通过平均场fokker-Planck方程获得的线性敏感性,然后提出与宏观情况相关的校正,该校正案例以自洽的方式结合了系统之间的相互作用的效果。这样的互动会产生内存效果。我们能够得出确定由于系统到系统相互作用而确定相变的发生的条件。这种相变存在于热力学极限中,与线性响应的差异相关,但不伴随着集成的自相关时间的差异,以适当定义的可观察到。我们澄清说,这种内源性相变与线性反应中其他病理的根本不同,在临界转变的背景下可以构建。最后,我们展示了我们的结果如何阐明Desai-Zwanzig模型和Bonilla-Casado-Morillo模型的性质,后者分别具有范式平衡和非平衡相变。
We study the response to perturbations in the thermodynamic limit of a network of coupled identical agents undergoing a stochastic evolution which, in general, describes non-equilibrium conditions. All systems are nudged towards the common centre of mass. We derive Kramers-Kronig relations and sum rules for the linear susceptibilities obtained through mean field Fokker-Planck equations and then propose corrections relevant for the macroscopic case, which incorporates in a self-consistent way the effect of the mutual interaction between the systems. Such an interaction creates a memory effect. We are able to derive conditions determining the occurrence of phase transitions specifically due to system-to-system interactions. Such phase transitions exist in the thermodynamic limit and are associated with the divergence of the linear response but are not accompanied by the divergence in the integrated autocorrelation time for a suitably defined observable. We clarify that such endogenous phase transitions are fundamentally different from other pathologies in the linear response that can be framed in the context of critical transitions. Finally, we show how our results can elucidate the properties of the Desai-Zwanzig model and of the Bonilla-Casado-Morillo model, which feature paradigmatic equilibrium and non-equilibrium phase transitions, respectively.