论文标题

小组表示学习中的可区分性蒸馏

Discriminability Distillation in Group Representation Learning

论文作者

Zhang, Manyuan, Song, Guanglu, Zhou, Hang, Liu, Yu

论文摘要

学习组表示是在基本单元是组,集合或序列的任务中普遍关注的问题。以前,研究社区试图通过基于人类定义的指标(例如质量和显着性)来汇总组中的要素,或者是由黑匣子产生的,例如注意力评分。本文提供了一种更必要和可说明的观点。我们声称最重要的指标表明该小组代表是否可以从其要素之一中受益不是质量或莫名其妙的分数,而是可区分性W.R.T.模型。我们使用嵌入式类质心在代理集合中明确设计可区分性。我们显示可区分性知识具有良好的属性,可以通过轻巧的蒸馏网络进行蒸馏,并且可以在看不见的目标集合上概括。整个过程表示为可区分性蒸馏学习(DDL)。提出的DDL可以灵活地插入许多基于组的识别任务中,而不会影响原始培训程序。关于各种任务的全面实验证明了DDL在准确性和效率方面的有效性。此外,它通过令人印象深刻的余量推动了这些任务的最新结果。

Learning group representation is a commonly concerned issue in tasks where the basic unit is a group, set, or sequence. Previously, the research community tries to tackle it by aggregating the elements in a group based on an indicator either defined by humans such as the quality and saliency, or generated by a black box such as the attention score. This article provides a more essential and explicable view. We claim the most significant indicator to show whether the group representation can be benefited from one of its element is not the quality or an inexplicable score, but the discriminability w.r.t. the model. We explicitly design the discrimiability using embedded class centroids on a proxy set. We show the discrimiability knowledge has good properties that can be distilled by a light-weight distillation network and can be generalized on the unseen target set. The whole procedure is denoted as discriminability distillation learning (DDL). The proposed DDL can be flexibly plugged into many group-based recognition tasks without influencing the original training procedures. Comprehensive experiments on various tasks have proven the effectiveness of DDL for both accuracy and efficiency. Moreover, it pushes forward the state-of-the-art results on these tasks by an impressive margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源