论文标题
通过隐藏的马尔可夫模型推断,通过隐藏的摄像机原始数据为视频超分辨率
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference
论文作者
论文摘要
据我们所知,现有的基于深度学习的视频超分辨率(VSR)方法专门利用相机系统的图像信号处理器(ISP)作为输入所产生的视频。这样的方法是1)固有的,由于ISP中的不可逆转操作所产生的信息损失,以及2)与实际成像管道不一致,其中VSR实际上是ISP的预处理单元。为了解决此问题,我们提出了一种新的VSR方法,该方法可以直接利用相机传感器数据,并伴随着精心构建的原始视频数据集(RAWVD)进行培训,验证和测试。该方法由连续的深度推理(SDI)模块和重建模块等。 SDI模块是根据隐藏Markov模型(HMM)推断的规范分解结果所建议的结构原理设计的;它通过使用可变形卷积反复执行成对特征融合来估算目标高分辨率框架。重建模块由精心设计的基于注意力的残留密度块(ARDB)构建,目的是1)完善融合功能; 2)学习产生空间特定于特定于特定于特定于空间的颜色的颜色信息,以进行准确的颜色校正。广泛的实验表明,由于相机原始数据的信息性,网络体系结构的有效性以及超分辨率和颜色校正过程的分离,因此所提出的方法与最新的ART相比,实现了优越的VSR结果,并且可以适用于任何特定的相机-ISP。代码和数据集可从https://github.com/proteus1991/rawvsr获得。
To the best of our knowledge, the existing deep-learning-based Video Super-Resolution (VSR) methods exclusively make use of videos produced by the Image Signal Processor (ISP) of the camera system as inputs. Such methods are 1) inherently suboptimal due to information loss incurred by non-invertible operations in ISP, and 2) inconsistent with the real imaging pipeline where VSR in fact serves as a pre-processing unit of ISP. To address this issue, we propose a new VSR method that can directly exploit camera sensor data, accompanied by a carefully built Raw Video Dataset (RawVD) for training, validation, and testing. This method consists of a Successive Deep Inference (SDI) module and a reconstruction module, among others. The SDI module is designed according to the architectural principle suggested by a canonical decomposition result for Hidden Markov Model (HMM) inference; it estimates the target high-resolution frame by repeatedly performing pairwise feature fusion using deformable convolutions. The reconstruction module, built with elaborately designed Attention-based Residual Dense Blocks (ARDBs), serves the purpose of 1) refining the fused feature and 2) learning the color information needed to generate a spatial-specific transformation for accurate color correction. Extensive experiments demonstrate that owing to the informativeness of the camera raw data, the effectiveness of the network architecture, and the separation of super-resolution and color correction processes, the proposed method achieves superior VSR results compared to the state-of-the-art and can be adapted to any specific camera-ISP. Code and dataset are available at https://github.com/proteus1991/RawVSR.