论文标题
数值连续张量网络在两个维度
Numerical continuum tensor networks in two dimensions
论文作者
论文摘要
我们描述了张量网络在连续限制中相互作用的二维费米子模型的波浪函数。我们使用两个不同的张量网络状态:一种基于通过多格里德的张量网络公式获得的费米子投影纠缠对态的数值连续性极限,而另一个基于费尔米金投影纠缠态与等距粗粒度变换层的结合。首先,我们使用二维相互作用的费米气体(Fermi Gus)在二维相互作用的费米气体上进行基准测试我们的方法,并使用具有多达1000个地点的网格上的张量网络,并在单一极限上具有吸引人的相互作用。
We describe the use of tensor networks to numerically determine wave functions of interacting two-dimensional fermionic models in the continuum limit. We use two different tensor network states: one based on the numerical continuum limit of fermionic projected entangled pair states obtained via a tensor network formulation of multi-grid, and another based on the combination of the fermionic projected entangled pair state with layers of isometric coarse-graining transformations. We first benchmark our approach on the two-dimensional free Fermi gas then proceed to study the two-dimensional interacting Fermi gas with an attractive interaction in the unitary limit, using tensor networks on grids with up to 1000 sites.