论文标题
分隔为比蒂序列
Partitions into Beatty sequences
论文作者
论文摘要
令$α> 1 $是一个不合理的数字。我们为$ n $的分区数量建立了渐近公式,并从beatty sequence $(\lfloorαm\ rfloor)_ {m \ in \ mathbb {n}} $中选择。这改善了1977年成立的Erdös和Richmond的一些结果。
Let $α>1$ be an irrational number. We establish asymptotic formulas for the number of partitions of $n$ into summands and distinct summands, chosen from the Beatty sequence $(\lfloorαm\rfloor)_{m\in\mathbb{N}}$. This improves some results of Erdös and Richmond established in 1977.