论文标题
预计的两点和三点统计:预测和缓解非线性RSD
Projected two- and three-point statistics: Forecasts and mitigation of non-linear RSDs
论文作者
论文摘要
星系的两点和三点聚类统计的组合以及潜在的物质分布有可能破坏宇宙学参数和滋扰参数之间的变性,并且可能导致对描述宇宙组成的参数的严格约束,从而明显更严格的约束。在这里,我们研究了估计参数中的偏差与投影星系密度场和镜头收敛的功率光谱和双光谱的非线性红移空间畸变的不准确建模。非线性红移空间变形是星系聚类中的主要系统不确定性之一。视线沿线的预测抑制了径向模式,因此允许由于非线性红移空间扭曲和统计不确定性而导致的偏见之间取舍。我们调查了这一偏见的权衡,以进行类似CMASS的调查,并具有不同数量的红移箱。改进的非线性红移空间变形的建模可以在控制偏见时恢复更多径向信息。不为非线性红移空间扭曲建模会使几乎所有参数的误差线夸大20%。局部非高斯幅度幅度的信息损失较小,因为它最适合大规模限制。此外,如果将断层扫描的深度降低到10 $ h^{ - 1} $ MPC,我们可以从经验上表明,可以恢复3D功率谱信息的99%以上。
The combination of two- and three-point clustering statistics of galaxies and the underlying matter distribution has the potential to break degeneracies between cosmological parameters and nuisance parameters and can lead to significantly tighter constraints on parameters describing the composition of the Universe and the dynamics of inflation. Here we investigate the relation between biases in the estimated parameters and inaccurate modelling of non-linear redshift-space distortions for the power spectrum and bispectrum of projected galaxy density fields and lensing convergence. Non-linear redshift-space distortions are one of the leading systematic uncertainties in galaxy clustering. Projections along the line of sight suppress radial modes and are thus allowing a trade-off between biases due to non-linear redshift-space distortions and statistical uncertainties. We investigate this bias-error trade-off for a CMASS-like survey with a varying number of redshift bins. Improved modelling of the non-linear redshift-space distortions allows the recovery of more radial information when controlling for biases. Not modelling non-linear redshift space distortions inflates error bars for almost all parameters by 20%. The information loss for the amplitude of local non-Gaussianities is smaller, since it is best constrained from large scales. In addition, we show empirically that one can recover more than 99% of the 3D power spectrum information if the depth of the tomographic bins is reduced to 10 $h^{-1}$Mpc.