论文标题
线性动力学系统的初始值隐私
Initial-Value Privacy of Linear Dynamical Systems
论文作者
论文摘要
本文研究了线性动力学系统的初始值隐私问题。我们考虑一个带有随机过程和测量噪声的标准线性时间不变系统。对于这样的系统,具有访问系统输出轨迹的窃听器可以推断系统初始状态,从而导致初始值的隐私风险。当窃听有限数量的输出轨迹时,我们认为要求对初始值的任何猜测都可以被合理地拒绝。当无限数量的输出轨迹被窃听时,我们会考虑一个要求初始值不应唯一可恢复的要求。鉴于这两个隐私要求,我们将差异性初始价值隐私和内在的初始价值隐私分别定义为该系统作为隐私风险的指标。首先,我们证明,固有的初始值隐私等同于不可观察性,而根据系统的扩展可观察性矩阵和声音的协方差,可以为隐私预算获得差异初始值隐私。接下来,探索了所考虑的线性系统的固有网络性质,每个状态对应于节点,状态和输出矩阵诱导交互和传感图,从而导致网络系统。在此网络系统的观点下,我们允许某些节点的初始状态公开,并研究每个节点的固有初始值隐私。我们为这种单个节点初始值隐私建立了必要和充分的条件,并证明单个节点的固有初始值隐私通常由网络结构确定。这些结果可以扩展到线性系统,并在相同的分析框架下具有随时间变化的动力学。
This paper studies initial-value privacy problems of linear dynamical systems. We consider a standard linear time-invariant system with random process and measurement noises. For such a system, eavesdroppers having access to system output trajectories may infer the system initial states, leading to initial-value privacy risks. When a finite number of output trajectories are eavesdropped, we consider a requirement that any guess about the initial values can be plausibly denied. When an infinite number of output trajectories are eavesdropped, we consider a requirement that the initial values should not be uniquely recoverable. In view of these two privacy requirements, we define differential initial-value privacy and intrinsic initial-value privacy, respectively, for the system as metrics of privacy risks. First of all, we prove that the intrinsic initial-value privacy is equivalent to unobservability, while the differential initial-value privacy can be achieved for a privacy budget depending on an extended observability matrix of the system and the covariance of the noises. Next, the inherent network nature of the considered linear system is explored, where each individual state corresponds to a node and the state and output matrices induce interaction and sensing graphs, leading to a network system. Under this network system perspective, we allow the initial states at some nodes to be public, and investigate the resulting intrinsic initial-value privacy of each individual node. We establish necessary and sufficient conditions for such individual node initial-value privacy, and also prove that the intrinsic initial-value privacy of individual nodes is generically determined by the network structure. These results may be extended to linear systems with time-varying dynamics under the same analysis framework.