论文标题

几乎关于Riemann Soliton和梯度的注释几乎是Riemann Soliton

A note on Almost Riemann Soliton and gradient almost Riemann soliton

论文作者

De, Krishnendu, De, Uday Chand

论文摘要

发行文章的追求是在非固定的正常触点折线$ m^3 $中调查\ emph {几乎riemann soliton}和\ emph {渐变{渐变几乎riemann soliton}。在其他所有方面,可以证明,如果$ m^3 $的度量是Riemann Soliton,带有无差异的潜在矢量场$ z $,那么歧管是Quasi-Sasakian,并且具有恒定的截面曲率 - $λ$,提供$α,$α,β= $常数。除此之外,还表明,如果$ m^3 $的度量是\ emph {ars},而$ z $的指标与$ξ$ collinear colinear colinear colinear colinear,并且$ z $是$ξ$的常数倍数,则\ emph {arss}减少了riemann soliton,前提是$ a $ $α,convants \ constands \;β= $;此外,确定如果$ m^3 $带有$α,\; β= $常数允许梯度\ emph {ars} $(γ,ξ,λ)$,那么歧管是准撒萨基人,或者是恒定的截面曲率$ - (α^2-β^2)$。最后,我们开发了一个$ M^3 $的示例,承认了Riemann Soliton。

The quest of the offering article is to investigate \emph{almost Riemann soliton} and \emph{gradient almost Riemann soliton} in a non-cosymplectic normal almost contact metric manifold $M^3$. Before all else, it is proved that if the metric of $M^3$ is Riemann soliton with divergence-free potential vector field $Z$, then the manifold is quasi-Sasakian and is of constant sectional curvature -$λ$, provided $α,β=$ constant. Other than this, it is shown that if the metric of $M^3$ is \emph{ARS} and $Z$ is pointwise collinear with $ξ$ and has constant divergence, then $Z$ is a constant multiple of $ξ$ and the \emph{ARS} reduces to a Riemann soliton, provided $α,\;β=$constant. Additionally, it is established that if $M^3$ with $α,\; β=$ constant admits a gradient \emph{ARS} $(γ,ξ,λ)$, then the manifold is either quasi-Sasakian or is of constant sectional curvature $-(α^2-β^2)$. At long last, we develop an example of $M^3$ conceding a Riemann soliton.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源