论文标题

三线性平滑不平等和三角形希尔伯特变换的变体

Trilinear smoothing inequalities and a variant of the triangular Hilbert transform

论文作者

Christ, Michael, Durcik, Polona, Roos, Joris

论文摘要

勒布斯格空间不等式证明了涉及曲率的三角形希尔伯特变换的变体。该分析依赖于本文中产生的至关重要的三线性平滑不平等,以及扭曲副膜的各向异性变体的边界。三线性平滑不等式还导致相应的最大函数和定量非线性Roth型定理的Lebesgue空间边界,涉及欧几里得平面中的模式。

Lebesgue space inequalities are proved for a variant of the triangular Hilbert transform involving curvature. The analysis relies on a crucial trilinear smoothing inequality developed herein, and on bounds for an anisotropic variant of the twisted paraproduct. The trilinear smoothing inequality also leads to Lebesgue space bounds for a corresponding maximal function and a quantitative nonlinear Roth-type theorem concerning patterns in the Euclidean plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源