论文标题
二元局部领域的通用积分二次形式
Universal integral quadratic forms over dyadic local fields
论文作者
论文摘要
如果它是不可或缺的,并且代表$ f $的所有非零整数,则在非架构的特征零$ f $的本地局部字段上的二次形式称为通用。 Xu Fei和Zhang Yang在$ f $是非野蛮的情况下确定了所有通用二次形式。在更复杂的二元案例中,当$ f $是$ \ mathbb q_2 $的有限扩展时,他们仅在三元案例中就解决了相同的问题。在我们的论文中,我们在一般情况下解决了这个问题。我们的结果是根据Bongs(规范生成器的基础)给出的,但是在本文的第3节中,我们翻译(没有证明)我们的结果是根据更传统的Jordan分裂。 在最后一部分中,我们对$ n $ umiversality给出了一些结果。我们表明,可以将其简化为$ n \ leq 4 $的案例,并且在$ n \ geq 3 $,$ n $奇数的情况下,我们为$ n $ umiversality提供了明确的必要条件。 (如果是二次形式,则称为$ n $ - maximal,如果它是积分的,并且代表所有等级$ n $的所有非排级二次二次形式。)
A quadratic form over a non-archimedian local field of characteristic zero $F$ is called universal if it is integral and it represents all non-zero integers of $F$. Xu Fei and Zhang Yang determined all universal quadratic forms in the case when $F$ is non-dyadic. In the more complicated dyadic case, when $F$ is a finite extension of $\mathbb Q_2$, they solved the same problem only in the ternary case. In our paper we solve this problem in the general case. Our result is given in terms of BONGs (bases of norm generators) but in section 3 of the paper we translate (without a proof) our result in terms of the more traditional Jordan splittings. In the last section we give some results on $n$-universality. We show that it can be reduced to the cases $n\leq 4$ and we give explicit necessary conditions for $n$-universality in the case when $n\geq 3$, $n$ odd. (A quadratic form is called $n$-maximal if it is integral and it represents all non-degenerate integral quadratic forms of rank $n$.)