论文标题
在高超球的基于投影的一类均匀性测试中
On a projection-based class of uniformity tests on the hypersphere
论文作者
论文摘要
我们使用统计量沿所有可能的方向集成了预测数据的加权二次差异,对超晶体提出了基于投影的均匀性测试类别。对于圆和球体,获得了几种测试统计的简单表达式,以及相对可牵引的形式的更高维度。尽管其起源不同,但拟议中的类被证明与经过深入研究的Sobolev类别的均匀性测试相关。我们的新课程通过允许为沃森(Watson),阿杰(Ajne)和罗斯曼(Rothman)整齐地扩展圆形测试的超透明数据的新测试来证明自己有利,并通过引入类似Anderson-Darling类似于此类数据的测试。获得了针对新测试的某些替代方案的渐近分布和局部最优性。一项模拟研究评估了理论发现和证据,这些发现和证据在某些情况下,新测试与以前的建议具有竞争力。新测试用于三种天文应用。
We propose a projection-based class of uniformity tests on the hypersphere using statistics that integrate, along all possible directions, the weighted quadratic discrepancy between the empirical cumulative distribution function of the projected data and the projected uniform distribution. Simple expressions for several test statistics are obtained for the circle and sphere, and relatively tractable forms for higher dimensions. Despite its different origin, the proposed class is shown to be related with the well-studied Sobolev class of uniformity tests. Our new class proves itself advantageous by allowing to derive new tests for hyperspherical data that neatly extend the circular tests by Watson, Ajne, and Rothman, and by introducing the first instance of an Anderson-Darling-like test for such data. The asymptotic distributions and the local optimality against certain alternatives of the new tests are obtained. A simulation study evaluates the theoretical findings and evidences that, for certain scenarios, the new tests are competitive against previous proposals. The new tests are employed in three astronomical applications.