论文标题
使用电子束诱导的发光显微镜对亚稳态态的位点选择性映射
Site-selective mapping of metastable states using electron-beam induced luminescence microscopy
论文作者
论文摘要
由电子或晶体缺陷中的孔捕获产生的可稳态态被广泛用于剂量法和光子应用中。费尔德斯帕克(Feldspar)是地壳中最丰富的矿物(> 50%),在暴露于电离辐射时产生了数百万年的亚稳态状态。尽管Feldspar广泛用于剂量法和地球体学中,但对亚稳态状态的产生和跨它们的电荷转移的理解很少。理解这种现象需要基于亚稳态状态的高分辨率,现场选择性探测的下一代方法。最近使用位点选择性技术(例如光致发光(PL)和7 K处的放射性发光(RL)的研究表明,Feldspar表现出两个近红外(NIR)发射带,在880 nm和955 nm处峰值峰值,据信它们源于主要电子电气捕捞状态。 在这里,我们首次使用频谱分辨的阴极发光显微镜在大约6至22微米的空间分辨率下首次使用富含钾的长石的电子捕获状态绘制。通过扫描电子显微镜探测的每个像素为我们提供了600-1000 nm范围内的阴极发光光谱(SEM-CL),以及来自能量分散性X射线(EDX)光谱的元素数据。我们得出的结论是,两个NIR排放在空间上是可变的,因此源自不同的位点。这一结论与现有模型相矛盾,即两种排放源于主要陷阱的两个不同激发态。此外,我们能够将单个NIR发射峰与地球化学变化(K,Na和Fe浓度)联系起来,并提出了一个集群模型,该模型解释了Fe4+对NIR发射的淬灭。
Metastable states created by electron or hole capture in crystal defects are widely used in dosimetry and photonic applications. Feldspar, the most abundant mineral in the Earth crust (>50%), generates metastable states with lifetimes of millions of years upon exposure to ionizing radiation. Although feldspar is widely used in dosimetry and geochronometry, the creation of metastable states and charge transfer across them is poorly understood. Understanding such phenomena requires next-generation methods based on high-resolution, site-selective probing of the metastable states. Recent studies using site-selective techniques such as photoluminescence (PL), and radioluminescence (RL) at 7 K have revealed that feldspar exhibits two near-infrared (NIR) emission bands peaking at 880 nm and 955 nm, which are believed to arise from the principal electron-trapping states. Here, we map for the first time the electron-trapping states in potassium-rich feldspar using spectrally-resolved cathodoluminescence microscopy at a spatial resolution of around 6 to 22 micrometer. Each pixel probed by a scanning electron microscope provides us a cathodoluminescence spectrum (SEM-CL) in the range 600-1000 nm, and elemental data from energy-dispersive x-ray (EDX) spectroscopy. We conclude that the two NIR emissions are spatially variable and, therefore, originate from different sites. This conclusion contradicts the existing model that the two emissions arise from two different excited states of a principal trap. Moreover, we are able to link the individual NIR emission peaks with the geochemical variations (K, Na and Fe concentration), and propose a cluster model that explains the quenching of the NIR emission by Fe4+.