论文标题

在局部抗刺激色的蜘蛛图上

On Local Antimagic Chromatic Number of Spider Graphs

论文作者

Lau, Gee-Choon, Shiu, Wai-Chee, Soo, Chee-Xian

论文摘要

连接图的边缘标记$ g =(v,e)$,如果是二线$ f:e \ to \ {1,。 。 。 ,| e | \} $,使得对于任何一对相邻的顶点$ x $和$ y $,$ f^+(x)\ ne f^+(y)$,其中诱导的dertex标签$ f^+(x)= \ sum f(e)$,$ e $在所有edges事件上均以$ e范围到$ x $。 $ g $的本地抗原色数,用$χ_{la}(g)$表示,是所有本地抗原标签上$ g $的最小诱导顶点标签的最小数量。在本文中,我们首先证明A $ D $ -LEG SPIDER图具有$ D+1 \leχ_{la} \ le D+2 $。然后,我们获得了许多足够的条件,以使两个值都是可以实现的。最后,我们证明每个3腿蜘蛛都有$χ_{la} = 4 $,如果不是所有的腿都奇怪。我们推测,几乎所有满足$ d(d+1)\ le 2(2q-1)$的$ q $的$ D $ -Leg蜘蛛,每个腿长至少2个具有$χ_{la} = D+1 $。

An edge labeling of a connected graph $G = (V,E)$ is said to be local antimagic if it is a bijection $f : E \to \{1, . . . , |E|\}$ such that for any pair of adjacent vertices $x$ and $y$, $f^+(x) \ne f^+(y)$, where the induced vertex label $f^+(x) = \sum f(e)$, with $e$ ranging over all the edges incident to $x$. The local antimagic chromatic number of $G$, denoted by $χ_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of $G$. In this paper, we first show that a $d$-leg spider graph has $d+1\le χ_{la}\le d+2$. We then obtain many sufficient conditions such that both the values are attainable. Finally, we show that each 3-leg spider has $χ_{la} = 4$ if not all legs are of odd length. We conjecture that almost all $d$-leg spiders of size $q$ that satisfies $d(d+1) \le 2(2q-1)$ with each leg length at least 2 has $χ_{la} = d+1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源