论文标题

审计数字平台以歧视经济机会广告

Auditing Digital Platforms for Discrimination in Economic Opportunity Advertising

论文作者

Kingsley, Sara, Wang, Clara, Mikhalenko, Alex, Sinha, Proteeti, Kulkarni, Chinmay

论文摘要

包括社交网络在内的数字平台是经济信息的主要来源。有证据表明,数字平台向人口群体展示了不同的社会经济机会。我们的工作通过提出一种方法和软件来审核数字平台,以解决偏见和歧视。为了证明,进行了Facebook平台和广告网络的审核。在2019年10月至2020年5月之间,我们从Facebook广告图书馆收集了141,063个广告。使用机器学习分类器,每个广告都由主要营销类别(住房,就业,信贷,政治,其他)自动标记。对于每个类别,我们按年龄组和性别分析了广告内容的分布。从审计结果中,我们考虑并提出了局限性,需求,基础架构和政策,这些局限性将使研究人员能够在将来进行更多的系统审核,并提倡为什么必须完成这项工作。我们还讨论了有偏分的分布如何影响人们拥有的社会经济机会,尤其是在数字平台上,某些人口群体被不成比例地排除在接受法律规定的内容的人群中。

Digital platforms, including social networks, are major sources of economic information. Evidence suggests that digital platforms display different socioeconomic opportunities to demographic groups. Our work addresses this issue by presenting a methodology and software to audit digital platforms for bias and discrimination. To demonstrate, an audit of the Facebook platform and advertising network was conducted. Between October 2019 and May 2020, we collected 141,063 ads from the Facebook Ad Library API. Using machine learning classifiers, each ad was automatically labeled by the primary marketing category (housing, employment, credit, political, other). For each of the categories, we analyzed the distribution of the ad content by age group and gender. From the audit findings, we considered and present the limitations, needs, infrastructure and policies that would enable researchers to conduct more systematic audits in the future and advocate for why this work must be done. We also discuss how biased distributions impact what socioeconomic opportunities people have, especially when on digital platforms some demographic groups are disproportionately excluded from the population(s) that receive(s) content regulated by law.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源