论文标题
贪婪的在线随机匹配的方法
Greedy Approaches to Online Stochastic Matching
论文作者
论文摘要
在随机探测的背景下,我们考虑在线随机匹配问题。也就是说,必须探测与在线节点相邻的边缘的单面在线二手匹配问题,以根据边缘概率确定它们是否存在,这些概率是在线顶点到达时已知的。如果存在探测的边缘,则必须在匹配(如果可能的话)中使用。我们考虑在线算法模型(AOM)和随机订单模型(ROM)中在线算法的竞争力。更具体地说,我们考虑了一个两分的随机图$ g =(u,v,e)$,其中$ u $是离线顶点集,$ v $是一组在线顶点,$ g $具有边缘概率$(p_ {e})_ {e \ in e} $ an} $ and e} $ and Edge strips $(w _ w_ w_ {e} e} $ {e}此外,$ g $具有探测约束$(\ scr {c} _ {v})_ {v \ in v} $,其中$ \ scr {c} _v $表示可以探索与在线顶点$ v $相邻的边序的边序。我们假设$ u $是提前知道的,并且仅在在线顶点到达时才能透露$ \ scr {c} _v $,以及与在线顶点相邻的边缘概率和权重。该模型概括了经典的两部分匹配问题的各种设置,因此我们的主要贡献是在理解哪些经典结果扩展到随机探测模型方面取得进展。
Within the context of stochastic probing with commitment, we consider the online stochastic matching problem; that is, the one-sided online bipartite matching problem where edges adjacent to an online node must be probed to determine if they exist based on edge probabilities that become known when an online vertex arrives. If a probed edge exists, it must be used in the matching (if possible). We consider the competitiveness of online algorithms in both the adversarial order model (AOM) and the random order model (ROM). More specifically, we consider a bipartite stochastic graph $G = (U,V,E)$ where $U$ is the set of offline vertices, $V$ is the set of online vertices and $G$ has edge probabilities $(p_{e})_{e \in E}$ and edge weights $(w_{e})_{e \in E}$. Additionally, $G$ has probing constraints $(\scr{C}_{v})_{v \in V}$, where $\scr{C}_v$ indicates which sequences of edges adjacent to an online vertex $v$ can be probed. We assume that $U$ is known in advance, and that $\scr{C}_v$, together with the edge probabilities and weights adjacent to an online vertex are only revealed when the online vertex arrives. This model generalizes the various settings of the classical bipartite matching problem, and so our main contribution is in making progress towards understanding which classical results extend to the stochastic probing model.