论文标题
6D离散1形对称的命运
The Fate of Discrete 1-Form Symmetries in 6d
论文作者
论文摘要
最近引入的广义全局对称性非常有用,可以理解四个和较低维度的量子场理论的非扰动方面。在本文中,我们着重于弱耦合的6D超对称量规的1形对称性,并耦合到动力张量多重量。我们通过激活其背景字段,研究了与量规组中心或其亚组相对应的全局1形对称性的一致性,这使得激体密度分数。在6D中,给定量规理论的intsanton背景通过t取消来源BPS字符串。非平凡的1形对称背景配置有助于BPS字符串的电荷。但是,狄拉克量化对一致的1形式背景施加了限制,因为它们通常可以导致并诱导分数电荷,从而使(一部分)推定的高格式对称性不一致。这给出了明确的标准,以确定是否实现了离散的1形式对称性。我们在源自弦乐压缩的具体示例中实施这些标准。我们还通过发现非平凡的分数贡献与明确破坏全局1形对称性的状态相关,从而证实了这一点。对于6D理论始终耦合到重力,这暗示了对称性破坏国家的塔。当不存在分数贡献时,理论的F理论实现指出,通过非平凡的mordell-Weil Torsion来计量1形对称性。
Recently introduced generalized global symmetries have been useful in order to understand non-perturbative aspects of quantum field theories in four and lower dimensions. In this paper we focus on 1-form symmetries of weakly coupled 6d supersymmetric gauge theories coupled to dynamical tensor multiplets. We study the consistency of global 1-form symmetries corresponding to the center of the gauge groups, or subgroups thereof, by activating their background fields, which makes the instanton density fractional. In 6d, an instanton background for a given gauge theory sources BPS strings via tadpole cancellation. The non-trivial 1-form symmetry background configurations contribute to the charge of the BPS strings. However, Dirac quantization imposes restrictions on the consistent 1-form backgrounds, since they can in general lead to and induce fractional charges, thus making (part of) the putative higher-form symmetry inconsistent. This gives explicit criteria to determine whether the discrete 1-form symmetries are realized. We implement these criteria in concrete examples originating from string compactifications. We also corroborate this by finding that a non-trivial fractional contribution is related to states which explicitly break the global 1-form symmetry appearing as massive excitations of the 6d BPS strings. For 6d theories consistently coupled to gravity, this hints at a symmetry breaking tower of states. When the fractional contributions are absent, the F-theory realization of the theories points to the gauging of the 1-form symmetry via the presence of non-trivial Mordell--Weil torsion.