论文标题
星际CME的高氦丰度和电荷状态及其在太阳上的材料来源
The high helium abundance and charge states of the interplanetary CME and its material source on the Sun
论文作者
论文摘要
识别冠状质量弹出(CME)内的材料来源并了解CME发作机制是太阳能和太空物理学的基本问题。与血浆组成有关的参数,例如电荷状态和他的丰度(\ ahe),对于源自太阳上不同过程或区域的等离子体可能有所不同。因此,研究CME组成的原位测量与太阳活性之间的关系至关重要。我们通过分析AIA成像和虹膜光谱观测及其在风和ACE检测到的原位标志,研究了2014年9月10日爆发的CME,与X1.6耀斑相关。我们发现,在缓慢的膨胀和强度增加期间,Sigmoid,血浆温度为9 MK,较高,首先出现在Sigmoid的脚步上,与色球亮度有关。然后高温区域沿着乙状结肠延伸。虹膜观察结果证实,此扩展是由热等离子体上流的运输引起的。我们的结果表明,通过在耀斑发作前在乙状结肠脚点处的色球蒸发,可以将色球材料加热至9 MK,及以上。加热的色球材料可以运输到乙状结肠结构中,并向CME供应质量。上述CME质量供应方案为检测高电荷态和相关ICME中升高的\ ahe \提供了合理的解释。观察结果还表明,前体相中的准稳态演化主要由磁通绳与上覆的磁场结构之间的磁重新连接所主导。
Identifying the source of the material within coronal mass ejections (CMEs) and understanding CME onset mechanisms are fundamental issues in solar and space physics. Parameters relating to plasma composition, such as charge states and He abundance (\ahe), may be different for plasmas originating from differing processes or regions on the Sun. Thus, it is crucial to examine the relationship between in-situ measurements of CME composition and activity on the Sun. We study the CME that erupted on 2014 September 10, in association with an X1.6 flare, by analyzing AIA imaging and IRIS spectroscopic observations and its in-situ signatures detected by Wind and ACE. We find that during the slow expansion and intensity increase of the sigmoid, plasma temperatures of 9 MK, and higher, first appear at the footpoints of the sigmoid, associated with chromospheric brightening. Then the high-temperature region extends along the sigmoid. IRIS observations confirm that this extension is caused by transportation of hot plasma upflow. Our results show that chromospheric material can be heated to 9 MK, and above, by chromospheric evaporation at the sigmoid footpoints before flare onset. The heated chromospheric material can transport into the sigmoidal structure and supply mass to the CME. The aforementioned CME mass supply scenario provides a reasonable explanation for the detection of high charge states and elevated \ahe\ in the associated ICME. The observations also demonstrate that the quasi-steady evolution in the precursor phase is dominated by magnetic reconnection between the rising flux rope and the overlying magnetic field structure.