论文标题

评估自适应比特率视频流的体验质量

Assessing the Quality-of-Experience of Adaptive Bitrate Video Streaming

论文作者

Duanmu, Zhengfang, Liu, Wentao, Li, Zhuoran, Chen, Diqi, Wang, Zhou, Wang, Yizhou, Gao, Wen

论文摘要

视频交付管道的多样性对评估自适应比特率(ABR)流算法和客观体验质量(QOE)模型构成了巨大的挑战。在这里,我们介绍了SO-FAR是同类主题评级的最大数据库,即Waterloosqoe-IV,由1350个自适应流视频组成,该视频由不同的源内容,视频编码器,网络轨迹,ABR算法和观看设备创建。我们通过一系列精心设计的主观实验收集每个视频的人类意见。随后使用数据库对ABR算法和QOE模型进行随后的数据分析和测试/比较,就主观实验方法的有效性,用户体验和源内容,查看设备和编码器类型之间的相互作用而言,在用户的偏见和经验的偏见中,ARB ALG和ARB AL GRITH的异质性,导致一系列新颖的观察和有趣的发现,用户体验和源内容和编码器类型之间的相互作用。最重要的是,我们的结果表明,更好的客观QoE模型或对人类感知经验和行为的更好理解是改善ABR算法性能的最主要因素,而不是高级优化框架,机器学习策略或带宽预测指标,在过去的十年中,大多数ABR研究都集中在大多数ABR研究中。另一方面,我们对11个QoE模型的绩效评估仅显示最新的QoE模型和主观评分之间的中等相关性,这意味着可以改善QOE建模和ABR算法的空间。该数据库可公开可用:\ url {https://ece.uwaterloo.ca/~zduanmu/waterloosqoe4/}。

The diversity of video delivery pipeline poses a grand challenge to the evaluation of adaptive bitrate (ABR) streaming algorithms and objective quality-of-experience (QoE) models. Here we introduce so-far the largest subject-rated database of its kind, namely WaterlooSQoE-IV, consisting of 1350 adaptive streaming videos created from diverse source contents, video encoders, network traces, ABR algorithms, and viewing devices. We collect human opinions for each video with a series of carefully designed subjective experiments. Subsequent data analysis and testing/comparison of ABR algorithms and QoE models using the database lead to a series of novel observations and interesting findings, in terms of the effectiveness of subjective experiment methodologies, the interactions between user experience and source content, viewing device and encoder type, the heterogeneities in the bias and preference of user experiences, the behaviors of ABR algorithms, and the performance of objective QoE models. Most importantly, our results suggest that a better objective QoE model, or a better understanding of human perceptual experience and behaviour, is the most dominating factor in improving the performance of ABR algorithms, as opposed to advanced optimization frameworks, machine learning strategies or bandwidth predictors, where a majority of ABR research has been focused on in the past decade. On the other hand, our performance evaluation of 11 QoE models shows only a moderate correlation between state-of-the-art QoE models and subjective ratings, implying rooms for improvement in both QoE modeling and ABR algorithms. The database is made publicly available at: \url{https://ece.uwaterloo.ca/~zduanmu/waterloosqoe4/}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源