论文标题
同源不变量的可定义内容i:$ \ mathrm {ext} $&$ \ mathrm {lim}^1 $
The definable content of homological invariants I: $\mathrm{Ext}$ & $\mathrm{lim}^1$
论文作者
论文摘要
这是一系列论文中的第一部分,在其中我们说明了如何富含其他描述性的理论信息的同源代数和代数拓扑的经典不变性。为了实现这种富集,我们表明,许多不变的人自然可以被视为具有波兰覆盖的群体的类别的函子。由此产生的可确定不变性提供了更强大的分类方式。 在目前的工作中,我们专注于$ \ mathrm {hom}( - , - )$和$ \ mathrm {lim}( - )$的第一个派生函数。可确定的$ \ mathrm {ext}(b,f)$用于对成对的Abelian $ b,f $和可定义的$ \ Mathrm {lim}^{1}(\ boldsymbol {a})$ for towers $ \ boldsymbol {a} $ boldsymbol {a} a} $ boldsymbol {a} $ obel Abelian of Polish Abelian comply complace complace complace complass class class class complace complace complace complace complace complace complace complace。例如,我们表明可定义的$ \ textrm {ext}( - ,\ mathbb {z})$是来自有限级秩的无扭力的无免费求和的有限级级别的$λ$的完全忠实的违反函数。这与以下事实形成鲜明对比:这些$λ$与同构的classical forfariants $ \ textrm {ext}(λ,λ,\ mathbb {z})$相反。为了促进我们的分析,我们为具有波兰覆盖的团体引入了一个普通的ULAM稳定框架,我们证明了具有波兰覆盖率的非Archimedean Abelian团体的几个刚性结果。我们的主要结果的一个特殊情况回答了Kanovei和Reeken关于$ P $ ADIC群体的商的问题。最后,使用共生超级汇率方法进行财产(T)组的作用,我们获得了问题的复杂度层次结构$ \ MATHCAL {r}(\ MATHRM {aut}(aut}(λ)\ curvearrowrowrowrowright \ mathrm {ext}(extemiation $ \ mathbb {z} $ to to base free free同构时,当$λ= \ mathbb {z} [1/p]^{d} $ for Prime数字$ p $和$ d \ geq 1 $时。
This is the first installment in a series of papers in which we illustrate how classical invariants of homological algebra and algebraic topology can be enriched with additional descriptive set-theoretic information. To effect this enrichment, we show that many of these invariants can be naturally regarded as functors to the category, introduced herein, of groups with a Polish cover. The resulting definable invariants provide far stronger means of classification. In the present work we focus on the first derived functors of $\mathrm{Hom}(-,-)$ and $\mathrm{lim}(-)$. The resulting definable $\mathrm{Ext}(B,F)$ for pairs of countable abelian groups $B,F$ and definable $\mathrm{lim}^{1}(\boldsymbol{A})$ for towers $\boldsymbol{A}$ of Polish abelian groups substantially refine their classical counterparts. We show, for example, that the definable $\textrm{Ext}(-,\mathbb{Z})$ is a fully faithful contravariant functor from the category of finite rank torsion-free abelian groups $Λ$ with no free summands; this contrasts with the fact that there are uncountably many non-isomorphic such groups $Λ$ with isomorphic classical invariants $\textrm{Ext}(Λ,\mathbb{Z}) $. To facilitate our analysis, we introduce a general Ulam stability framework for groups with a Polish cover and we prove several rigidity results for non-Archimedean abelian groups with a Polish cover. A special case of our main result answers a question of Kanovei and Reeken regarding quotients of the $p$-adic groups. Finally, using cocycle superrigidity methods for profinite actions of property (T) groups, we obtain a hierarchy of complexity degrees for the problem $\mathcal{R}(\mathrm{Aut}(Λ)\curvearrowright\mathrm{Ext}(Λ,\mathbb{Z}))$ of classifying all group extensions of $Λ$ by $\mathbb{Z}$ up to base-free isomorphism, when $Λ=\mathbb{Z}[1/p]^{d}$ for prime numbers $p$ and $ d\geq 1$.