论文标题
全球阶段肖像和大型渐近学的亲吻多项式
Global Phase Portrait and Large Degree Asymptotics for the Kissing Polynomials
论文作者
论文摘要
我们研究了一个一元正交多项式的家族,该家族相对于不同的,复杂的重量功能,$ \ exp(nsz)$,在间隔$ [-1,1] $上是正交的,其中$ s \ in \ inthbb {c} $是任意的。当参数纯粹是虚构的,即在i \ mathbb {r} $中的$ s \时,该多项式最初出现在文献中,这是因为它与复杂的高斯二次二次规则有关高度振动性积分的关系。这些多项式的渐近学是$ n \ to \ infty $最近在I \ Mathbb {r} $中以$ s \的研究进行了研究,我们的主要目标是将这些结果扩展到复杂平面中的所有$ S $。 我们首先在参数空间中使用延续技术,在可集成系统理论的背景下开发,以将所谓修改的外部场上的先前结果从虚构轴到复杂平面减去一组临界曲线,称为断裂曲线。然后,我们将强大的非线性陡峭下降方法应用于Deift和Zhou在1990年代提出的振荡性Riemann-Hilbert问题,以获取这些多项式$ S $从断裂曲线中消失时这些多项式$ S $的复发系数的渐近系数。然后,当参数$ s $接近断裂曲线时,我们通过将双缩放限制视为$ s $接近这些点时,对复发系数进行分析。我们将在复发系数的行为上看到质的差异,具体取决于我们是否正在接近$ s = \ pm 2 $的点或破裂曲线上的其他一些点。
We study a family of monic orthogonal polynomials which are orthogonal with respect to the varying, complex valued weight function, $\exp(nsz)$, over the interval $[-1,1]$, where $s\in\mathbb{C}$ is arbitrary. This family of polynomials originally appeared in the literature when the parameter was purely imaginary, that is $s\in i \mathbb{R}$, due to its connection with complex Gaussian quadrature rules for highly oscillatory integrals. The asymptotics for these polynomials as $n\to\infty$ have been recently studied for $s\in i\mathbb{R}$, and our main goal is to extend these results to all $s$ in the complex plane. We first use the technique of continuation in parameter space, developed in the context of the theory of integrable systems, to extend previous results on the so-called modified external field from the imaginary axis to the complex plane minus a set of critical curves, called breaking curves. We then apply the powerful method of nonlinear steepest descent for oscillatory Riemann-Hilbert problems developed by Deift and Zhou in the 1990s to obtain asymptotics of the recurrence coefficients of these polynomials when the parameter $s$ is away from the breaking curves. We then provide the analysis of the recurrence coefficients when the parameter $s$ approaches a breaking curve, by considering double scaling limits as $s$ approaches these points. We shall see a qualitative difference in the behavior of the recurrence coefficients, depending on whether or not we are approaching the points $s=\pm 2$ or some other points on the breaking curve.