论文标题
规定性业务流程监控,以推荐下一个最佳动作
Prescriptive Business Process Monitoring for Recommending Next Best Actions
论文作者
论文摘要
预测业务流程监控(PBPM)技术基于历史事件日志数据来预测未来的过程行为,以改善运营业务流程。关于下一个活动预测,最近的PBPM技术使用最先进的深度神经网络(DNN)来学习预测模型,以在运行过程实例中产生更准确的预测。即使组织通过关键绩效指标(KPI)来衡量过程绩效,但DNN的学习过程并没有直接影响他们。因此,在实践中,由此产生的接下来最可能的活动预测可能会较小。规范性业务流程监控(PRBPM)方法评估有关其对过程性能的影响(通常由KPI衡量)的预测,以通过提出警报或建议采取行动来防止不希望的过程活动。但是,这些方法都没有建议根据给定的KPI优化的操作。我们提出了一种PRBPM技术,该技术将下一个最有可能的活动转变为有关给定KPI的下一个最佳动作。因此,我们的技术使用业务流程模拟来确保推荐动作的控制流符合度。基于我们使用两个现实生活事件日志的评估,我们表明我们的技术的下一个最佳动作可以优于关于优化KPI以及与实际过程实例的距离的下一个活动预测。
Predictive business process monitoring (PBPM) techniques predict future process behaviour based on historical event log data to improve operational business processes. Concerning the next activity prediction, recent PBPM techniques use state-of-the-art deep neural networks (DNNs) to learn predictive models for producing more accurate predictions in running process instances. Even though organisations measure process performance by key performance indicators (KPIs), the DNN`s learning procedure is not directly affected by them. Therefore, the resulting next most likely activity predictions can be less beneficial in practice. Prescriptive business process monitoring (PrBPM) approaches assess predictions regarding their impact on the process performance (typically measured by KPIs) to prevent undesired process activities by raising alarms or recommending actions. However, none of these approaches recommends actual process activities as actions that are optimised according to a given KPI. We present a PrBPM technique that transforms the next most likely activities into the next best actions regarding a given KPI. Thereby, our technique uses business process simulation to ensure the control-flow conformance of the recommended actions. Based on our evaluation with two real-life event logs, we show that our technique`s next best actions can outperform next activity predictions regarding the optimisation of a KPI and the distance from the actual process instances.