论文标题

无参考的屏幕内容图像图像质量评估和无监督的域名适应

No-reference Screen Content Image Quality Assessment with Unsupervised Domain Adaptation

论文作者

Chen, Baoliang, Li, Haoliang, Fan, Hongfei, Wang, Shiqi

论文摘要

在本文中,我们寻求将自然场景图像的质量传递到光学相机(例如屏幕内容图像,SCIS)未获取的图像的能力,该图像植根于广泛接受的观点,即人类视觉系统已经通过自然环境的感知来适应和进化。在这里,我们开发了第一个无监督的域适应性,基于SCI的无参考质量评估方法,利用自然图像(NIS)的主观评级丰富。通常,将质量预测模型从NIS直接传输到具有截然不同的统计特征的新类型的内容(即SCI)是一项非平凡的任务。受配对关系的可转移性的启发,提出的质量度量是基于提高可转移性和可区分性的理念的。特别是,我们介绍了三种类型的损失,这些损失可以互补,明确地以渐进式的方式正规化排名的特征空间。关于特征歧视能力的增强,我们提出了基于中心的损失,以纠正分类器并提高其对源域(NI)的预测能力,还提高了目标域(SCI)。为了最小化特征差异,最大平均差异(MMD)被施加在NIS和SCI的提取的排名特征上。此外,为了进一步增强特征多样性,我们引入了不同特征维度之间的相关性惩罚,从而导致级别和较高多样性的特征。实验表明,基于轻量级卷积神经网络,我们的方法可以在不同的源目标设置上实现更高的性能。提出的方法还阐明了学习质量评估的质量评估措施,而没有看到的特定应用程序,而没有繁琐的主观评估。

In this paper, we quest the capability of transferring the quality of natural scene images to the images that are not acquired by optical cameras (e.g., screen content images, SCIs), rooted in the widely accepted view that the human visual system has adapted and evolved through the perception of natural environment. Here, we develop the first unsupervised domain adaptation based no reference quality assessment method for SCIs, leveraging rich subjective ratings of the natural images (NIs). In general, it is a non-trivial task to directly transfer the quality prediction model from NIs to a new type of content (i.e., SCIs) that holds dramatically different statistical characteristics. Inspired by the transferability of pair-wise relationship, the proposed quality measure operates based on the philosophy of improving the transferability and discriminability simultaneously. In particular, we introduce three types of losses which complementarily and explicitly regularize the feature space of ranking in a progressive manner. Regarding feature discriminatory capability enhancement, we propose a center based loss to rectify the classifier and improve its prediction capability not only for source domain (NI) but also the target domain (SCI). For feature discrepancy minimization, the maximum mean discrepancy (MMD) is imposed on the extracted ranking features of NIs and SCIs. Furthermore, to further enhance the feature diversity, we introduce the correlation penalization between different feature dimensions, leading to the features with lower rank and higher diversity. Experiments show that our method can achieve higher performance on different source-target settings based on a light-weight convolution neural network. The proposed method also sheds light on learning quality assessment measures for unseen application-specific content without the cumbersome and costing subjective evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源