论文标题
贝叶斯关节同步和基于不对称时戳交换的本地化
Bayesian Joint Synchronization and Localization Based on Asymmetric Time-stamp Exchange
论文作者
论文摘要
在这项工作中,我们研究了超密集网络中移动节点(MNS)的联合同步和定位(同步和LOC)。特别是,我们在MN和访问节点(ANS)之间部署了不对称的时间戳交换机制,传统上,该机制为我们提供了有关MNS时钟偏移和偏斜的信息。但是,有关AN和MN之间距离的信息也与交换时戳所经历的传播延迟固有。此外,我们利用到达角度(AOA)估计来确定时标交换数据包的传入方向,该方向提供了有关MNS位置的更多信息。最后,我们采用贝叶斯递归滤波(BRF)来组合上述信息,并共同估计MNS的位置和时钟参数。模拟结果表明,位置和时钟偏移估计的根平方误差(RMS)分别保持在1米和1 ns以下。
In this work, we study the joint synchronization and localization (sync&loc) of Mobile Nodes (MNs) in ultra dense networks. In particular, we deploy an asymmetric timestamp exchange mechanism between MNs and Access Nodes (ANs), that, traditionally, provides us with information about the MNs' clock offset and skew. However, information about the distance between an AN and a MN is also intrinsic to the propagation delay experienced by exchanged time-stamps. In addition, we utilize Angle of Arrival (AoA) estimation to determine the incoming direction of time-stamp exchange packets, which gives further information about the MNs' location. Finally, we employ Bayesian Recursive Filtering (BRF) to combine the aforementioned pieces of information and jointly estimate the position and clock parameters of MNs. The simulation results indicate that the Root Mean Square Errors (RMSEs) of position and clock offset estimation are kept below 1 meter and 1 ns, respectively.