论文标题
NASCAPS:神经架构搜索框架,以优化卷积胶囊网络的准确性和硬件效率
NASCaps: A Framework for Neural Architecture Search to Optimize the Accuracy and Hardware Efficiency of Convolutional Capsule Networks
论文作者
论文摘要
深度神经网络(DNN)已取得了重大改进,以达到在各种机器学习(ML)应用中使用的所需准确性。最近,Google Brain的团队展示了胶囊网络(CAPSNET)编码和学习不同输入特征之间的空间相关性的能力,从而获得了与传统(基于非胶囊)DNN相比的卓越学习能力。但是,使用常规方法设计封net是一项繁琐的工作,并且会产生重大的培训工作。最近的研究表明,为给定的一组应用程序和培训数据集自动选择最佳/最佳DNN模型配置的强大方法基于神经体系结构搜索(NAS)算法。此外,由于其极端的计算和内存要求,DNN是使用Iot-Edge/CPS设备中的专用硬件加速器使用的。在本文中,我们提出了NASCAPS,这是一种自动化的框架,用于不同类型的DNN的硬件含义的NAS,涵盖了传统的卷积DNN和Capsnets。我们研究部署多目标遗传算法的功效(例如,基于NSGA-II算法)。所提出的框架可以共同优化网络准确性和相应的硬件效率,该效率在执行DNN推理的给定硬件加速器的能量,内存和延迟方面表示。除了支持传统的DNN层外,我们的框架是第一个建模并支持NAS-Flow中专门的胶囊层和动态路由的框架。我们在不同的数据集上评估我们的框架,生成不同的网络配置,并演示不同输出指标之间的权衡。我们将在https://github.com/ehw-fit/nascaps上开放源自帕累托(Pareto-Optimal)体系结构的完整框架和配置。
Deep Neural Networks (DNNs) have made significant improvements to reach the desired accuracy to be employed in a wide variety of Machine Learning (ML) applications. Recently the Google Brain's team demonstrated the ability of Capsule Networks (CapsNets) to encode and learn spatial correlations between different input features, thereby obtaining superior learning capabilities compared to traditional (i.e., non-capsule based) DNNs. However, designing CapsNets using conventional methods is a tedious job and incurs significant training effort. Recent studies have shown that powerful methods to automatically select the best/optimal DNN model configuration for a given set of applications and a training dataset are based on the Neural Architecture Search (NAS) algorithms. Moreover, due to their extreme computational and memory requirements, DNNs are employed using the specialized hardware accelerators in IoT-Edge/CPS devices. In this paper, we propose NASCaps, an automated framework for the hardware-aware NAS of different types of DNNs, covering both traditional convolutional DNNs and CapsNets. We study the efficacy of deploying a multi-objective Genetic Algorithm (e.g., based on the NSGA-II algorithm). The proposed framework can jointly optimize the network accuracy and the corresponding hardware efficiency, expressed in terms of energy, memory, and latency of a given hardware accelerator executing the DNN inference. Besides supporting the traditional DNN layers, our framework is the first to model and supports the specialized capsule layers and dynamic routing in the NAS-flow. We evaluate our framework on different datasets, generating different network configurations, and demonstrate the tradeoffs between the different output metrics. We will open-source the complete framework and configurations of the Pareto-optimal architectures at https://github.com/ehw-fit/nascaps.