论文标题

无监督的跨域图像分类按距离指导特征对齐

Unsupervised Cross-domain Image Classification by Distance Metric Guided Feature Alignment

论文作者

Meng, Qingjie, Rueckert, Daniel, Kainz, Bernhard

论文摘要

由于领域转移的问题,学习在不同领域都可以推广的深神经网络仍然是一个挑战。无监督的域适应性是一种有希望的途径,它在不使用目标域中的任何标签的情况下将知识从源域转移到目标域。当代技术着重于使用域对抗训练提取域不变特征。但是,这些技术忽略了在目标域的潜在表示空间中学习判别类别边界,而产生有限的适应性绩效。为了解决这个问题,我们提出了距离指标的特征比对(METFA),以在源和目标域上提取歧视性和域不变特征。提出的METFA方法明确并直接了解潜在表示,而无需使用域对抗训练。我们的模型集成了类分布对齐,以将语义知识从源域转移到目标域。我们在胎儿超声数据集上评估了提出的方法,以进行跨部件图像分类。实验结果表明,所提出的方法的表现优于最新方法,并实现了模型的概括。

Learning deep neural networks that are generalizable across different domains remains a challenge due to the problem of domain shift. Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain without using any labels in the target domain. Contemporary techniques focus on extracting domain-invariant features using domain adversarial training. However, these techniques neglect to learn discriminative class boundaries in the latent representation space on a target domain and yield limited adaptation performance. To address this problem, we propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains. The proposed MetFA method explicitly and directly learns the latent representation without using domain adversarial training. Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain. We evaluate the proposed method on fetal ultrasound datasets for cross-device image classification. Experimental results demonstrate that the proposed method outperforms the state-of-the-art and enables model generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源