论文标题

智能无线电信号处理:调查

Intelligent Radio Signal Processing: A Survey

论文作者

Pham, Quoc-Viet, Nguyen, Nhan Thanh, Huynh-The, Thien, Le, Long Bao, Lee, Kyungchun, Hwang, Won-Joo

论文摘要

无线通信的智能信号处理是现代无线系统的重要任务,但是由于网络异质性,多样化的服务要求,大量连接和各种无线电特性,它面临着新的挑战。由于大数据和计算技术的最新进展,人工智能(AI)已成为无线电信号处理的有用工具,并使智能无线电信号处理能够实现。该调查涵盖了无线物理层的四个智能信号处理主题,包括调制分类,信号检测,波束形成和通道估计。特别是,每个主题都在专门的部分中介绍,从最基本的原则开始,然后对最新研究和摘要进行审查。为了提供必要的背景,我们首先简要概述了AI技术,例如机器学习,深度学习和联合学习。最后,我们重点介绍了智能无线电信号处理领域的许多研究挑战和未来方向。我们希望这项调查是对智能无线电信号处理感兴趣的任何人的良好信息来源,我们提供的观点将在未来刺激更多新颖的想法和贡献。

Intelligent signal processing for wireless communications is a vital task in modern wireless systems, but it faces new challenges because of network heterogeneity, diverse service requirements, a massive number of connections, and various radio characteristics. Owing to recent advancements in big data and computing technologies, artificial intelligence (AI) has become a useful tool for radio signal processing and has enabled the realization of intelligent radio signal processing. This survey covers four intelligent signal processing topics for the wireless physical layer, including modulation classification, signal detection, beamforming, and channel estimation. In particular, each theme is presented in a dedicated section, starting with the most fundamental principles, followed by a review of up-to-date studies and a summary. To provide the necessary background, we first present a brief overview of AI techniques such as machine learning, deep learning, and federated learning. Finally, we highlight a number of research challenges and future directions in the area of intelligent radio signal processing. We expect this survey to be a good source of information for anyone interested in intelligent radio signal processing, and the perspectives we provide therein will stimulate many more novel ideas and contributions in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源