论文标题

使用5G边计算启用远程全身控制

Enabling Remote Whole-Body Control with 5G Edge Computing

论文作者

Zhu, Huaijiang, Sharma, Manali, Pfeiffer, Kai, Mezzavilla, Marco, Shen, Jia, Rangan, Sundeep, Righetti, Ludovic

论文摘要

现实世界中的应用需要轻巧,节能,完全自主的机器人。然而,增加自主权通常是升级计算要求的代名词。因此,可能需要卸载密集的计算 - 不仅是感应和计划,而且还需要低级全身控制 - 到远程服务器,以减少车载计算需求。第五代(5G)无线蜂窝技术具有低潜伏期和高带宽功能,有可能解锁基于云的复杂机器人的高性能控制。但是,针对腿部机器人的最新控制算法只能忍受非常低的控制延迟,即使超低延迟5G边缘计算有时也无法实现。在这项工作中,我们研究了5G链接上对腿机器人的基于云的全身控制问题。我们提出了一种新的方法,该方法由网络边缘上的基于标准优化的控制器和一个局部线性(近似最佳的控制器)组成,该控制器大大减少了车载计算需求,同时增加了鲁棒性以延迟和可能的通信损失。关于类人类平衡和步行任务的模拟实验,包括现实的5G通信模型,表明在5G无线链接中可能经历的抖动和延迟下的机器人运动的可靠性显着提高。

Real-world applications require light-weight, energy-efficient, fully autonomous robots. Yet, increasing autonomy is oftentimes synonymous with escalating computational requirements. It might thus be desirable to offload intensive computation--not only sensing and planning, but also low-level whole-body control--to remote servers in order to reduce on-board computational needs. Fifth Generation (5G) wireless cellular technology, with its low latency and high bandwidth capabilities, has the potential to unlock cloud-based high performance control of complex robots. However, state-of-the-art control algorithms for legged robots can only tolerate very low control delays, which even ultra-low latency 5G edge computing can sometimes fail to achieve. In this work, we investigate the problem of cloud-based whole-body control of legged robots over a 5G link. We propose a novel approach that consists of a standard optimization-based controller on the network edge and a local linear, approximately optimal controller that significantly reduces on-board computational needs while increasing robustness to delay and possible loss of communication. Simulation experiments on humanoid balancing and walking tasks that includes a realistic 5G communication model demonstrate significant improvement of the reliability of robot locomotion under jitter and delays likely to experienced in 5G wireless links.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源