论文标题
Lassalle序列完善的毫无印度
Unimodality of a refinement of Lassalle's sequence
论文作者
论文摘要
Defant,Engen和Miller定义了Lassalle的序列$ A_ {K+1} $的改进,考虑了唯一排序的长度$ 2K+1 $的排列,其第一个元素是$ \ ell $。他们表明,每个这样的序列都是在$ \ ell $中对称的,并猜想这些序列是单峰的。我们证明序列是单峰。
Defant, Engen, and Miller defined a refinement of Lassalle's sequence $A_{k+1}$ by considering uniquely sorted permutations of length $2k+1$ whose first element is $\ell$. They showed that each such sequence is symmetric in $\ell$ and conjectured that these sequences are unimodal. We prove that the sequences are unimodal.